Skip to content
 Scroll To Top

Michael Stekoll, Ph.D.

Professor of Chemistry and Biochemistry 
Arts and Sciences - Natural Sciences


796-6447 (Fax)

Anderson Bldg 205E, Juneau Campus



  • B.S., 1971, Stanford University
  • Ph.D., 1976, University of California Los Angeles


The biological communities along most of the rocky shores of Alaska are defined by the marine plant associations. A major portion of the primary production throughout the year is provided by the benthic plants in the nearshore. These communities are often disturbed not only by natural phenomena, such as winter storms and ice, but also by anthropogenic disturbances such as harvesting and pollution.

My research has concentrated in both basic and applied aspects of the biology and ecology of marine benthic plants and on the effects of disturbances on this community. My associates and I have investigated the effects of harvest and pollution on the intertidal and subtidal seaweeds.  We have also developed techniques fore using remote sensing to map floating kelp beds in SE Alaska.

We have conducted applied research on the commercial exploitation of seaweeds. In addition to performing seaweed resource assessments for potential commercial harvest, we have investigated the potential of mariculture as a means to enhance exploited algal resources. There are many organisms that can be cultured which have potential to be developed as a high value product. Among these are seaweeds such as Macrocystis (giant kelp), Nereocystis (bull kelp) and Porphyra (nori).  My lab has worked out the procedures for the successful mariculture of Macrocystis.  We have researched the physiological ecology of Porphyra as it relates to its culture. This plant can be marketed both as nori for the sushi and health food market and as black seaweed for the Native community.  Our latest project is investigating nitrogen partitioning in the red alga Palmaria, a potential feed for abalone culture, throughout its growing season. I am also involved in kelp ecology and mariculture studies in South Africa in cooperation with colleagues at the University of Cape Town and Marine and Coastal Management.

Other "non seaweed" projects have involved the effects of pollution on salmon and herring. We completed research on the potential impacts of mining activities on the nearshore benthos, and have investigated the effects of common ions (hard water) from mine wastewater on the growth and development of coho salmon. Another project has been research on delayed effects of oil exposure on zebra fish as a model for salmonid exposure. 

Select Publications

Curriculum vitae

Courses Taught:

  • BIOL 401 Phycology
  • BIOL 482 Aquatic Pollution
  • CHEM 105 General Chemistry
  • CHEM 341 Organic Chemistry
  • CHEM 342 Biological Chemistry

Page maintained by Webmaster. Directory information is maintained by each department.