“Final Report”
Campus Facilities Master Plan

October 2002

CUNINGHAM GROUP

and

THE SARATOGA ASSOCIATES

LANDSCAPE ARCHITECTS, ARCHITECTS, ENGINEERS, AND PLANNERS, P.C.
ACKNOWLEDGMENTS

FACILITIES PLANNING TEAM

In the Spring of 2001, the University of Alaska commissioned The Cunningham Group (Minneapolis, MN) and The Saratoga Associates (Saratoga Springs, NY), to develop a Campus Facilities Master Plan for the UAS campuses in Juneau, Sitka and Ketchikan. The planning team worked closely with campus administrators, faculty, staff, students and members of the communities to identify goals and issues that could be incorporated into the plans.

Senior Staff Steering Committee:
- Chancellor ...John R. Pugh
- Vice-Chancellor .. Carol Griffin
- Provost & Graduate Dean Roberta Stell
- Arts, Sciences & Business Dean Mary Lou Madden
- Education Dean ... Marilyn Taylor
- Students & Enrollment Management Dean Paul Kraft
- Student Services ... Tish Griffin
- Facilities .. Keith Gerken
- Development ... Lynn Johnson
- Career Education Dean Karen Schmitt
- Information Technology Services Director Mike Ciri
- Ketchikan Campus Director Karen Polley
- Sitka Campus Director John Carnegie

PLANNING PROCESS

The formal three-phase planning process commenced in the spring of 2001. Phase One involved the assessment of the existing campus building and site facilities at Juneau, Ketchikan and Sitka. This phase also identified existing space distribution, perceived space needs and calculated space needs. The planning team visited the three campuses in May 2001 to conduct interviews and gain an understanding of the existing site and building conditions.

Phase Two involved the development of site and building concepts to respond to the needs from the assessment phase. A four-day “Design Charrette” was held on campus in September 2001 to seek input and shape ideas with the campus community. A series of concept alternatives were identified during this phase that included ideas for land acquisition, open space, building sites, vehicular circulation and arrival, pedestrian circulation and space distribution.

Phase Three packaged the projects by priority, budget and schedule spread over three planning periods; short-term 0-5 years; mid-term 5-10 years; and long-term 10 years +.

A presentation of the draft plan was made to the Board of Regents in March 2002 with the final report to be completed in Fall 2002.
ACKNOWLEDGMENTS

“Design Charrette” September 18-21, 2001

Input from Campus Community during “Design Charrette”

FINAL REPORT

The University of Alaska Southeast final report document consists of a 3-ring binder divided into numbered sections appropriate to the scope of work. Section I – Executive Summary, is an overview of the entire report focusing on the Implementation Plan recommendations. Each subsequent Section is fashioned to act as stand alone entity. A separate Executive Summary has also been provided.

Graphics
Foldout graphics in the form of building or site plans are included in each relevant section. They are referenced in the narrative text as appropriate with a sample notation as follows: Figure 4.3 – Land Holdings

Appendix
The Appendix is provided to allow more in-depth perusal of the data behind the findings and recommendations. The Appendices are referenced in the report text as appropriate.

Electronic Instruments of Service
A compact disc (CD-R) containing final written and graphic material produced is also provided. The graphics are in the Auto-Cadd © 2000 format; Spreadsheets are in the Microsoft © 2000 Excel.xls format.
1.1 PROFILE

“Mission Statement”
The University of Alaska Southeast is an open enrollment, public university that provides postsecondary education for a diverse student body. University of Alaska Southeast promotes student achievement and faculty scholarship, lifelong learning opportunities, and quality academic programs. The University of Alaska Southeast dedicated itself to the following:

- Achieving distinction as a learning community
- Developing programs and services rooted in its unique natural setting
- Developing educated citizens with a sense of personal ethics
- Serving as a center for culture and arts with a focus on Alaska Native traditions
- Contributing to the economic development of the region and the state through basic and applied research and public service
- Using technology effectively in all programs and services
- Forging dynamic partnerships with other academic institutions, governmental agencies and private industry.

UAS: The Next Decade Strategic Plan for the University of Alaska Southeast 2000-2010
This strategic plan seeks to operationalize the University of Alaska Southeast’s mission and give life to the core values within the context of the region and state. The University community has identified the following seven programmatic goals that call upon UAS to:

- Be the leading liberal arts institution in Alaska
- Be the preferred provider of teacher education programs for potential and current practitioners throughout the state
- Be the premier in-state campus for marine and environmental science programs
- Be the statewide service center for business education
- Be the acknowledged leader for health occupations education in Southeast Alaska
- Be the primary provider of information technology education in the region
- Be the first-choice source of vocational and continuing education for regional citizens and industry

The University of Alaska southeast (UAS) serves over 4,330 students each semester from campuses in Juneau, Sitka, Ketchikan, and outreach locations throughout Southeast Alaska. UAS offers a variety of degrees through distance delivery. These include certificate, associate, and baccalaureate degrees, various professional certifications and endorsements in Education, the Master’s of Public Administration and Master’s of Education Early Childhood Education.

Juneau Campus
This campus is a residential institution located in Alaska’s capital city, along the shores of Auke Lake. The campus offers baccalaureate degrees in liberal arts, with emphasis in art, communication, general studies, government, literature, mathematics, and social science; business administration with emphasis in accounting, management, and general business; biology with emphases in general and marine biology, and environmental
The Campus offers a variety of undergraduate and graduate programs. Master's of Arts in teaching at the elementary and secondary levels, and Masters' in Education and Public Administration. Credential and endorsement programs include early childhood education, elementary education, and educational technology. In addition, the campus offers a variety of certificates, an Associate of Arts degree and Associate of Applied Science degrees in various technical fields.

Ketchikan Campus
The campus is located in Alaska’s southernmost major city, the first port of call for cruise ships entering the state. Instruction is available for the traditional transfer curriculum, Associate of Arts degree, and Associate of Applied Science degrees in business administration, apprenticeship technology, and computer information and office systems (CIOS). The campus offers certificates in accounting technician, small business management, CIOS, and welding technology. A rich variety of continuing education offerings are also available to support community needs.

Sitka Campus
The Sitka Campus is located on Japonski Island in Sitka Sound, which is connected by bridge to the town. The campus offers the Associate of Arts degree, the traditional transfer curriculum, and Associate of Applied Science degrees in CIOS, apprenticeship technology, environmental technology, and health information management. The latter two are entirely distance delivered across Alaska and to students in other states. Certificates in accounting technician, CIOS, environment technology, health information management, law enforcement, coding specialist, welding technology, as well as a wide range of continuing education courses are regularly available.

COLLEGE ACADEMIC HISTORY

Juneau-Douglas Community College was established in 1956 and Southeastern Senior College was established in 1972. These merged in 1980 to become the University of Alaska – Juneau.

In 1987, the Juneau Campus merged with the community colleges in Ketchikan and Sitka to become a comprehensive regional university. The Ketchikan campus is the oldest campus in the southeast Alaska region. It was established as Ketchikan Community College in 1954 and merged into UAS in 1987. UAS Sitka was founded as Sitka Community College in 1962. It merged with UAS in 1987.
ENROLLMENT PROFILE

- **Headcounts by Campus:** Fall 2000
 - Juneau Campus: 2,754
 - Ketchikan Campus: 465
 - Sitka Campus: 1,265
 - **TOTAL:** 4,484

- **Student Credit Hours by Campus:** Fall 2000
 - Juneau Campus: 15,398
 - Ketchikan Campus: 2,017
 - Sitka Campus: 4,071
 - **TOTAL:** 21,486

- **Student Full-Time Equivalent (FTE):** Fall 2000
 - Juneau Campus: 1,071
 - Ketchikan Campus: 137
 - Sitka Campus: 273
 - **TOTAL:** 1,481

- **Non-Credit Headcount:** Fall 2000
 - Juneau Campus: 101
 - Ketchikan Campus: 91
 - Sitka Campus: 174
 - **TOTAL:** 366

Source: UA Information Systems UA in Review 2001
1.2 PLANNING ISSUES AND GOALS

- Provide facilities to accommodate a full-time student population of 1,000 at the Juneau Campus and 1,200 region wide by 2005.
- Provide increased opportunities for student activities
- Provide facilities for the premier in-state campus for marine and environmental science programs.
- Provide living/learning environments with an orientation towards the unique asset of the southeast area region.

To accomplish these programmatic goals, UAS will preserve the attributes that have served it well to this point. In particular, it will:

- Continue its leadership in technology, with the goal of being in the top ten among its peers as a “wired campus.”
- Maintain quality academic support in its library information and media services
- Extend support to its distance students comparable to on-campus services
- Cultivate a student-centered ethos in all programs and services
- Partner with other academic, governmental and private agencies to increase the effectiveness and efficiency of its programs

The Campus Facilities Master Planning Team has reviewed the Mission Statement and Strategic Plan as it relates to the Juneau, Sitka and Ketchikan campuses, and has strived to develop planning concepts that will reinforce these goals and ideas.
1.3 SPACE INVENTORY AND NEEDS ASSESSMENT
CALCULATED NEEDS

The calculated needs were developed to identify current and future space excesses and shortfalls. The calculations are based upon enrollment in Full-Time Equivalents (FTEs) provided by the university. Table 1.3.2 summarizes the calculated needs. The enrollment figures provided by the University are presented below in Table 1.3.1.

Table 1.3.1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Administration</td>
<td>158</td>
<td>266</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Career Education</td>
<td>14</td>
<td>53</td>
<td>0</td>
<td>0.2</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>Education</td>
<td>81</td>
<td>202</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Liberal Arts</td>
<td>240</td>
<td>525</td>
<td>0</td>
<td>57</td>
<td>0</td>
<td>18</td>
</tr>
<tr>
<td>Science and Mathematics</td>
<td>80</td>
<td>195</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Professional Development</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Social Sciences</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Administration*</td>
<td>474</td>
<td>534</td>
<td>127</td>
<td>0</td>
<td>232</td>
<td>0</td>
</tr>
<tr>
<td>Continuing Education</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Others</td>
<td>24</td>
<td>56</td>
<td>4</td>
<td>112</td>
<td>20</td>
<td>503</td>
</tr>
<tr>
<td>TOTALS</td>
<td>1,071</td>
<td>1,831</td>
<td>137</td>
<td>184</td>
<td>273</td>
<td>551</td>
</tr>
</tbody>
</table>

*Undeclared Major

Table 1.3.2

<table>
<thead>
<tr>
<th>Campus</th>
<th>Existing 2000</th>
<th>Calculated Year 2000</th>
<th>Excess Shortfall</th>
<th>Existing 2012</th>
<th>Calculated Year 2012</th>
<th>Excess Shortfall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juneau</td>
<td>61,816</td>
<td>59,255</td>
<td>2,561</td>
<td>72,416</td>
<td>100,561</td>
<td>-28,145</td>
</tr>
<tr>
<td>Ketchikan</td>
<td>21,008</td>
<td>7,457</td>
<td>13,551</td>
<td>21,008</td>
<td>10,019</td>
<td>10,989</td>
</tr>
<tr>
<td>Sitka</td>
<td>17,677</td>
<td>13,739</td>
<td>3,938</td>
<td>17,677</td>
<td>27,712</td>
<td>-10,035</td>
</tr>
</tbody>
</table>

PERCEIVED NEEDS

The perceived needs were compiled through the distribution of questionnaires to students, faculty and staff followed by interview and campus tours. Table 1.3.3 summarizes these needs.

Table 1.3.3

<table>
<thead>
<tr>
<th>Campus</th>
<th>Perceived Needs (NASF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juneau</td>
<td>14,960</td>
</tr>
<tr>
<td>Ketchikan</td>
<td>8,180</td>
</tr>
<tr>
<td>Sitka</td>
<td>15,300</td>
</tr>
</tbody>
</table>
1.4 SITE ASSESSMENT – Juneau Campus

A Composite Analysis map was developed to serve as a framework to guide future campus growth. The map identifies the following:

- Nine future building development zones
- Vehicular circulation and arrival opportunities
- Potential land acquisition parcels
- Potential location of a linear “campus green”
- Significant views

The information provided for the Composite Analysis provided the basis for the site concept options.

High quality views to Auke Lake from Juneau Campus core buildings

Student housing buildings incorporated into the natural environment, Juneau Campus

The developed Academic/Support core area offers in-fill opportunities to conserve surrounding forests.

The environmental context for the campus provides a unique setting to fulfill the UAS mission.
LANDHOLDINGS ASSESSMENT

The Juneau Campus is located in three areas: (1) the main Juneau Campus on Auke Bay; (2) the Marine Core Building; and (3) Bill Ray Center

Analysis of the current landholdings at the Auke Bay Campus indicates the potential to acquire additional property that is contiguous to the Campus to provide for future growth and enhance the campus edge. These have been categorized into three levels of priority for acquisition pending availability.

Priority 1: • Bedford Property adjacent to the Anderson Building. This would permit expansion of science facility and connect to an adjacent parcel of UAS land that is vacant.

• U.S. Forest Service Property to the north of Egan Library. This would allow the core campus to grow in the direction of student housing and future recreation.

Priority 2: • Bus Barn Property on north side of Bark Loop Road. This has been identified as a site for relocating physical plant.

Priority 3: • Five Residential Properties located on the east side of Glacier Highway. This would complete the campus edge in this area.

• Vacant land on the north side of this Back Loop Road and west of University Drive.

• Student Activities Center Site (currently being leased). Potential surge space.

An additional area is identified as a potential property that UAS should explore as a land trade. This property is owned by the Presbyterian Church and is located to the north of the existing church buildings. The property is currently used as a parking area for weekend and evening church events and week-day parking for the campus. Discussions between UAS and church leaders indicate future plans for the church to expand the chapel and develop a recreation center. It is recommended that UAS and the church work together to plan future development in a manner that creates a desirable land use pattern that recognizes common needs.

CAMPUS PRECINCTS ASSESSMENT

• The Student Activities Center is too distant from the campus core area and student housing. Ideally, the location of this type of facility should be in close proximity to both student housing and the academic core area.

• As the need arises for additional on-campus student housing, consideration should be given to the infill of housing to the area immediately north of the Academic/Support core area along the Auke Lake edge. This area could potentially be used for freshman housing with the existing housing precinct used primarily for upper-class and married students. Development of this area is contingent upon the acquisition of
this property from the United States Forest Service (USFS). There are also opportunities to expand the existing housing zone with additional student apartments and dorms.

- There are opportunities to infill the core Academic/Support precinct within existing UAS property to the north of Egan Library and the Mourant Building. Acquisition of the USFS property to the north of Egan Library would provide the opportunity to expand the campus core area. There is also a significant opportunity to develop an upper layer of buildings parallel to the parking area to the north of Whitehead, Novatney and Soboleff (See Composite Analysis). Infill buildings for support/academic uses in this area would also help define a linear “campus green” in the core area.

- The academic precinct could be expanded in the area associated with the Anderson Building. Key to this expansion is the acquisition of the Bedford Property which lies between two parcels of UAS land.

- Ideally, the facilities services functions of a campus the size of UAS should be organized in one zone. Currently, these functions are located in three different areas. Consideration should be given to expanding the current site on the north side of the Mendenhall Loop Road and acquiring the Bus Barn Property to centralize services.

- The future development of the UAS Recreation Center/National Guard Readiness Center Joint Facility to the north of the campus core and southwest of the student housing area, will require well-developed walkways to help link this new precinct with the campus.

- In summary, the precincts of the campus are spatially not connected well due to distance factors, topography and the need for an academic/research area to be located in close proximity to Auke Bay. Efforts should be made to infill the campus academic/support core area with uses that are functionally compatible versus decentralizing future development in outlying areas of the campus.

VEHICULAR CIRCULATION AND PARKING

Vehicular circulation and parking were analyzed to determine opportunities to improve campus arrival, mitigate pedestrian/vehicular conflicts and expand or remove roads where appropriate based on an overall campus plan.

- Primary campus entry – the existing entrance off of Glacier Highway is not well defined. Difficult turning movements on curve and awkward alignment of entry road/service road near the Presbyterian Church.

- Existing Glacier Highway entry drive lacks a sense of arrival. Once you get to the campus core, the road is too close to Hendrickson, Soboleff and Whitehead buildings and the primary pedestrian walkway.

- Existing parking lots are being expanded as per zoning requirements for new classroom building.

- Two bays of existing parking to the north of the Facilities Services Building are dead end parking lots. These could be connected.

- UAS currently utilizes the Presbyterian Church parking lot for parking on weekdays and evenings.

- The secondary entry road off of Back Loop Road provides an interesting approach to the campus. This approach terminates with an excellent view of the campus, distant mountains, Auke Lake, and the Mendenhall Glacier. There is the potential to use this entry road as the primary campus entrance road. Issues associated with this concept
are winter driving on hill to the south of the entrance on the Back Loop Road and
overcoming the idea that this is a back door to the campus.

- Previous master plan identified new entrance road and bridge that would provide
access from Glacier Highway at a point approximately 500’ to the SE of the existing
entrance. This would require property acquisition and environmental/visual issues
associated with Auke Lake environment.
- The existing campus road that parallels buildings fronting Auke Lake has the
potential to be relocated to the west to provide more open space and building
development expansion. This may benefit from use of the currently leased
Presbyterian Church parking lot property if some trade of property were acceptable to
both parties.
- The existing campus road on the west side of Egan and Novatney is currently a dead
end with limited ADA, service, and shuttle bus parking. This area has the potential
to be developed as open space directly related to the core area buildings.
- Access road to Facilities Services Building is difficult due to grade and alignment.
Potential relocation of physical plant would mitigate this issue.
- Parking is determined by zoning City of Juneau ordinance. Parking capacity should
be calculated based on users and be coordinated with Presbyterian Church parking
needs.

PEDESTRIAN CIRCULATION ASSESSMENT

- There are pedestrian/vehicular conflicts in seven areas. The most significant
being those that involve crossing Glacier Highway to access the Anderson
Building, crossing the Mendenhall Loop Road to access the SAC Building and
student housing, and along segments of Glacier Highway where there is no
walkway.
- The location of the campus road on the west side of Novatney, Whitehead,
Soboleff and Hendrickson creates numerous pedestrian/vehicular conflicts.
Potential relocation of a segment of this road further west would mitigate this
problem.
- The indoor/outdoor circulation path that extends from the Mourant Building to
the Hendrickson Building is circuitous. The current floor plan for Whitehead
requires pedestrians to walk around the building and interrupts this indoor
pedestrian spine.
- Future Pedestrian connections are needed to link student housing and the campus
academic support core to the future UAS recreation center.

ENVIRONMENTAL FEATURES AND REGULATORY ASSESSMENT

- Of the 190.78 acres inclusive of easements and right-of-ways on the UAS Juneau
Campus, (not including the acreage associated with recent property acquisition in
the vicinity of University Drive) the following statistical data was provided by
UAS:
 - 49.83 acres – Land in easements and encumbrances
 - 20.39 acres – Land devoted to greenbelts and open space
 - 126.01 acres – Acres requiring Corp of Engineers permitting prior to
development
 - There is a 50’ building setback from Auke Lake
There is a 100’ stream greenbelt corridor for a stream in the northwestern portion of the campus.

The campus has significant environmental constraints associated with steep topography, wetlands, forested areas, bedrock and setback and buffer protrusions. Future development should focus on areas that are the most environmentally suitable with an emphasis on in-filling the existing academic/support campus core area.

The area between the main parking area and the Whitehead Building offers the potential to be reconfigured and expanded as a linear “campus green.”

Views to Auke Lake should be preserved and maximized from campus buildings and walkways.

SITE ASSESSMENT SUMMARY – SITKA CAMPUS

- Improve way finding to the campus form the town and airport through the use of a UAS signage system.
- Enhance sense of entry from Seward Street.
- Potential expansion opportunities for new buildings on site within the existing UAS property.
- Future in-fill buildings should be sited to provide a pedestrian open space system that is more “campus like” with walkways, landscaping and well-defined spaces.

SITE ASSESSMENT SUMMARY - KETCHIKAN CAMPUS

- Way finding to both campuses could be improved with a UAS signage system.
- Site entry points could be enhanced.
- Limited building in-fill opportunities on both sides.
- Building/ground interface could be enhanced through additional greenspace and landscaping.
1.5 SPACE DISTRIBUTION CONCEPTS

The Space Distribution Concepts provide solutions to the needs identified in the Assessment Phase. The framework for the solutions was established during the campus design charrette held during September. The concepts seek to add space when required, improve utilization of existing space and bring order and organization to the distribution of space across the three campuses.

1.5.1 UAS – JUNEAU CAMPUS

Egan Classroom Addition. Completion of this project, currently under construction, will add approximately 10,600 Net Assignable Square Feet (NASF) of classroom space. The space calculations (Section 3.3) indicate a current surplus of approximately 6,000 NASF. In the 2012 calculations, which include the Egan Classroom addition and all other space currently used as classrooms, there remains approximately a 6,200 NASF surplus. However the quality of much of the existing classrooms is not up to current teaching standards and should be renovated or taken off-line. The Egan Library Addition will allow some of the sub-standard classroom space to be converted to other uses.

Hendrickson Annex. This facility houses the majority of classrooms that are in need of renovation. With the completion of the Egan Classroom Addition UAS will have the opportunity to relocate a portion of the Bill Ray Center (BRC) programs back to campus. Eliminating Classrooms 108, 109, and 110 will make available approximately 1,400 ASF for re-assignment. The following Professional Education Center program can be relocated in close proximity to the Education faculty and staff.

Professional Education Center
- Professional Staff 1,080 NASF
- Clerical Staff 320 NASF

Academic/Student Services Building
Development of a Student Services Building will bring all of the student services functions together in one area for improved efficiency in operation and accessibility to students. Relocation of these functions from Novatney will allow for the expansion of faculty offices. It is also recommended that the senior administration offices be relocated from the Soboleff Annex, a temporary building that has long outlived its intended period of use. The proposed siting of the Student Services building to the center of campus will place the senior administration at the center of the campus.

The following programs are recommended for the Student Services Building:

Business Office 1,040 NASF
- Director 160 NASF
- Accts. Rec. Supervisor 120 NASF
- Grants 120 NASF
- Staff: (6) @ 80ASF ea. 480 NASF
- Cashier 160 NASF
Records Office
- Vice President: 180 NASF
- Assistant Vice President: 160 NASF
- Analyst: 120 NASF
- Fac. Offices: 2 @ 120ASF ea.: 240 NASF

Personnel Office
- Director: 160 NASF
- Assistant Director: 120 NASF
- Staff: 3 @ 80ASF ea.: 240 NASF
- Files: 120 NASF

Student Services
- Total: 4,200 NASF

Administration
- Total: 3,300 NASF

Instructional Space
- Classrooms: 1,800 NASF
- Computer Labs: 1,050 NASF

TOTAL PROGRAM
- Total: 12,850 NASF

Armory/Recreation Center. The development of the proposed facility will allow the relocation of the programs currently housed in the Student Activities Center. The vacant SAC can be utilized as surge space as other facilities are renovated or the lease can be terminated.

The Armory/Recreation Center project should include as part of the site component, the development of the South Entrance to the campus.
Science Facilities. Development of the science program at the Juneau campus figure prominently in the institution’s strategic planning. Development and expansion of laboratories and ancillary functions support Initiative 3 of UAS: The Next Decade, The Strategic Plan for the University of Alaska Southeast. This has been reflected in the University’s projected increase in enrollment. Currently the labs are located in the Anderson Building on Auke Bay and shared with the University of Alaska Fairbanks Fisheries program. The Fisheries program is tentatively scheduled to be relocated off campus. Expansion of the UAS program will encompass the renovation of the Anderson building and construction of two new facilities.

Anderson Building. The University of Alaska Fairbanks fisheries program currently occupies 5,019 NASF on all levels of the Anderson Building. This space will be available to the UAS science program when the UAF program relocates to new facilities planned for Lena Point adjacent to the new NOAA lab. The UAF facilities represent approximately 50% of the 10,697 NASF of the building. The following program spaces will occupy the newly renovated facility:

<table>
<thead>
<tr>
<th>Program Space</th>
<th>NASF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Biology Lab</td>
<td>800</td>
</tr>
<tr>
<td>2. Prep Room</td>
<td>160</td>
</tr>
<tr>
<td>3. Physiology Lab</td>
<td>800</td>
</tr>
<tr>
<td>4. Prep Room</td>
<td>160</td>
</tr>
<tr>
<td>5. Upper Division Biology Lab – Sea Water</td>
<td>800</td>
</tr>
<tr>
<td>6. Prep Room</td>
<td>160</td>
</tr>
<tr>
<td>7. Student Study Lounge (Computer Access)</td>
<td>350</td>
</tr>
<tr>
<td>8. Graduate Student Offices</td>
<td>960</td>
</tr>
<tr>
<td>9. Faculty Offices</td>
<td>960</td>
</tr>
<tr>
<td>10. Physics Lab</td>
<td>800</td>
</tr>
<tr>
<td>11. Environmental Sciences Lab</td>
<td>800</td>
</tr>
<tr>
<td>12. Prep Room</td>
<td>160</td>
</tr>
<tr>
<td>13. Physics Equipment Storage</td>
<td>800</td>
</tr>
<tr>
<td>14. Cadaver Storage/Lab</td>
<td>300</td>
</tr>
<tr>
<td>15. General Equipment Storage</td>
<td>450</td>
</tr>
<tr>
<td>16. Departmental Work Room</td>
<td>200</td>
</tr>
<tr>
<td>17. Departmental Storage/Stockroom</td>
<td>200</td>
</tr>
<tr>
<td>18. Departmental Reception/Secretary</td>
<td>120</td>
</tr>
<tr>
<td>19. Department Chairs Office</td>
<td>200</td>
</tr>
<tr>
<td>20. Conference Room</td>
<td>250</td>
</tr>
<tr>
<td>Total Assigned Program</td>
<td>9,430</td>
</tr>
</tbody>
</table>

Total Assigned Program: 9,430 NASF
New Multiple-Story Building. This new facility will be located within the general vicinity of the Anderson Building. It is anticipated that the structure will be steel frame with wood veneer on block walls. It will be three levels in height at approximately 7,600 GSF per level. The program elements assigned to the new building are as follows:

<table>
<thead>
<tr>
<th>Program Description</th>
<th>Assigned NASF</th>
</tr>
</thead>
<tbody>
<tr>
<td>21. Biology Faculty/Grad Research Labs</td>
<td>4,800</td>
</tr>
<tr>
<td>22. Soils/Sediment/Rock Lab</td>
<td>800</td>
</tr>
<tr>
<td>23. Prep Room</td>
<td>160</td>
</tr>
<tr>
<td>24. Faculty Offices</td>
<td>1,200</td>
</tr>
<tr>
<td>25. Graduate Student Offices</td>
<td>960</td>
</tr>
<tr>
<td>26. Two Student Study Lounges</td>
<td>700</td>
</tr>
<tr>
<td>27. ES Faculty Research Labs</td>
<td>2,400</td>
</tr>
<tr>
<td>28. ES Graduate Research Labs</td>
<td>2,400</td>
</tr>
<tr>
<td>29. Chemistry Lab</td>
<td>800</td>
</tr>
<tr>
<td>30. Prep Room</td>
<td>160</td>
</tr>
<tr>
<td>31. Instrument Room</td>
<td>120</td>
</tr>
<tr>
<td>32. Balance Room</td>
<td>320</td>
</tr>
<tr>
<td>33. Stock Room</td>
<td>1,440</td>
</tr>
<tr>
<td>34. Hazardous Material Storage</td>
<td>200</td>
</tr>
<tr>
<td>35. Chemistry Department Storage</td>
<td>600</td>
</tr>
<tr>
<td>36. Chemistry Faculty, Research Labs</td>
<td>600</td>
</tr>
<tr>
<td>37. General Classroom Space</td>
<td>1,200</td>
</tr>
<tr>
<td>38. Conference Room</td>
<td>250</td>
</tr>
<tr>
<td>39. Seminar Room</td>
<td>400</td>
</tr>
<tr>
<td>Total Assigned Program</td>
<td>19,510</td>
</tr>
</tbody>
</table>

Marine Sciences Wet Lab Building. This facility will be of a one-story metal, slab-on-grade construction. Pre-engineered Building systems offer inexpensive, free-span, flexible space. The following programs have been segregated from the Andersen Building and new facilities due to excessive odors and need for heavy salt and fresh water tanks.

<table>
<thead>
<tr>
<th>Program Description</th>
<th>Assigned NASF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Necropsy/Mammalian Research Lab</td>
<td>600</td>
</tr>
<tr>
<td>2. Seawater Lab</td>
<td>2,600</td>
</tr>
<tr>
<td>3. Dive Locker</td>
<td>600</td>
</tr>
<tr>
<td>4. Greenhouse</td>
<td>400</td>
</tr>
<tr>
<td>5. Wood Shop</td>
<td>300</td>
</tr>
<tr>
<td>6. Machine Shop</td>
<td>300</td>
</tr>
<tr>
<td>7. Storage/Loading Dock</td>
<td>900</td>
</tr>
<tr>
<td>8. Conference Room</td>
<td>250</td>
</tr>
<tr>
<td>Total Assigned Program</td>
<td>5,950 NASF</td>
</tr>
</tbody>
</table>

Facilities Services. The Facilities Services are currently housed in several locations. The primary facility, which includes administration offices, staff support, and shops, is a converted residence, woefully inadequate to the task. There is no suitably flat area to locate a new facility including parking and shelter for vehicles. A bus garage located on Back Loop Road may be available for purchase by the University. The following
program is intended for use in evaluating potential existing facilities or constructing new
on a suitable site.

Administration/Staff Offices

- Director 160 NASF
- Operations Manager 120 NASF
- Project Services Manager 120 NASF
- Health and Safety Officer 120 NASF
- Office Manager 120 NASF
- Property 80 NASF
- Maintenance Supervisor 80 NASF
- Custodial Supervisor 80 NASF
- Architectural Assistant 200 NASF
- Plan File Room 600 NASF
- Administrative Assistant 100 NASF
- Reception 120 NASF

Central Storage/Shop Facility

- Storage 8,000 NASF
- Carpentry Shop 400 NASF
- Plumbing Shop 200 NASF
- Electrical Shop 200 NASF

Vehicle Storage/Maintenance Shelter

- Large Dump Truck
- Small Dump Truck
- Large Front End Loader
- Small Front End Loader
- Repair and Expansion Bays

1.5.2 UAS – SITKA CAMPUS

The two most pressing needs at the Sitka facility are bringing the hangar activities into
code compliance and increasing the amount of Distance Learning facilities. The plans
currently proposed for the facility will meet these requirements. The program cannot be
entirely justified based upon current and projected enrollment. However, the nature of a
Community College is such that the facilities need to be responsive to the local industry
needs and grant-driven programs. The following represents the new program additions
planned for the facility.

- Student Resource Area
- Faculty Resource Area
- 2 Classrooms
- Lounge
- Storage

1.5.3 UAS – KETCHIKAN CAMPUS
The Ketchikan facilities are located on two sites: the upper campus with the Ziegler and Paul buildings and the lower, waterfront campus with the Hamilton/Robertson building. The central issue regarding facilities in Ketchikan is the need to upgrade existing program space to meet current and projected need. The following projects will improve and expand the outdated science lab in the Ziegler Building and develop Environmental Science facilities at the Hamilton/Robertson Building.
1.6 SITE CONCEPTS

In September of 2001, the master planning team held a design “Charrette” workshop on campus to gain input from the University community and to develop alternative plans for further evaluation. The purpose of developing alternative plans was to explore design options related to land use, future building zones, open space and campus circulation. Evaluation of the options would then provide the basis from which to develop a “preferred” master plan.

Three options were developed as follows:

- **Option 1**
 This option is based on the concept of establishing the north entrance off Back Loop Road as the only public entrance to the core area of the campus. The entry would align with the access to the proposed student recreation and readiness center complex located on the north side of the Back Loop Road. These two entry points at one intersection would provide the opportunity to develop a well-defined entrance area for the campus off of the Back Loop Road. The existing entrance from Glacier Highway would be used for access to the Church property and emergency/service access for the campus.

 The existing road located on the west side of the campus buildings would be removed to provide the opportunity to create a “campus green” that would extend as a linear “campus green” pedestrian zone from the Egan Library to the Hendrickson Building. This area would be pedestrian oriented and allow vehicle access for service and emergency vehicles only.

 Development zones for new buildings are identified to provide a logical “in-fill” of the campus. A primary building site is identified in the eastern side of the existing main parking lot that would overlook the campus green. Building in this location would further define the western edge of the green space.

- **Options 2 & 2B**
 These options vary from Option 1 through the development of a new primary entrance drive off of Glacier Highway to the south of the existing entrance. This entry road would provide access for both the campus and church facilities. A bridge would be required across Auke Creek and visual, environmental and traffic related issues would need to be addressed with this concept.

 Building development zones are similar to Option 1 with the exception of future student housing expansion occurring in the existing housing precinct.

 Option 2B realigns the entry road to the west of the current location to provide the opportunity to create a “campus green.” This scheme requires coordination with the church to facilitate a land trade, lease, easement or acquisition to allow for the entry road relocation.

- **Option 3**
This plan realigns the existing primary entry drive of Glacier Highway and relocates this road within the campus similar to Option 2B. A linear “campus green” is also a component of this option.
1.7 IMPLEMENTATION PLAN

The Implementation Plan identifies specific project budgets and schedules based on project scope and priorities developed during the Concept. The Implementation Plan divides individual projects into related ‘Groups’ and then schedules them in a sequential manner based on priorities, funding and dependency on previous projects.

Project Budget Basis
Project costs consist of ‘hard’ (probable construction cost) plus Technology Infrastructure (Tech) at 6 percent of hard costs, Furniture, Fixtures and Equipment (FF&E) at 7 percent; plus ‘soft’ costs (approvals, surveys, testing & design) at 10 percent. Project Budgets are estimated based on mid-year 2001 construction costs. Annual inflation, calculated at a rate of 4% per year is incorporated in the following Implementation Chart. Table 1.7.2 delineates the rate increase multiplier for a particular year using the base 2001 cost estimate. The per square foot cost ranges used in the Implementation Plan for various levels of work are noted in Table 1.7.1.

Table 1.7.1 – Project Cost Square Per Square Foot Basis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Construction (highly technical)</td>
<td>$285</td>
<td>$17</td>
<td>$20</td>
<td>$28</td>
<td>$350</td>
</tr>
<tr>
<td>New Construction (non-technical)</td>
<td>$235</td>
<td>$14</td>
<td>$23</td>
<td>$35</td>
<td>$307</td>
</tr>
<tr>
<td>Major Renovation (highly technical)</td>
<td>$250</td>
<td>$15</td>
<td>$25</td>
<td>$37</td>
<td>$327</td>
</tr>
<tr>
<td>Major Renovation</td>
<td>$150</td>
<td>$9</td>
<td>$15</td>
<td>$22</td>
<td>$196</td>
</tr>
<tr>
<td>Minor Renovation</td>
<td>$60</td>
<td>$4</td>
<td>$6</td>
<td>$8</td>
<td>$78</td>
</tr>
<tr>
<td>Relocation Only</td>
<td>$7</td>
<td>$2</td>
<td>$1</td>
<td>$1</td>
<td>$11</td>
</tr>
</tbody>
</table>

Site project budgets were generated in a similar manner based on square foot or lump sum amounts.

Table 1.7.2 – Cumulative Multipliers of 2001 $ Based on an Assumed 4% Yearly Escalation Rate.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>MULTIPLIER</th>
<th>YEAR</th>
<th>MULTIPLIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>100.00%</td>
<td>2008</td>
<td>131.59%</td>
</tr>
<tr>
<td>2002</td>
<td>104.00%</td>
<td>2009</td>
<td>136.86%</td>
</tr>
<tr>
<td>2003</td>
<td>108.16%</td>
<td>2010</td>
<td>142.33%</td>
</tr>
<tr>
<td>2004</td>
<td>112.49%</td>
<td>2011</td>
<td>148.02%</td>
</tr>
<tr>
<td>2005</td>
<td>116.99%</td>
<td>2012</td>
<td>153.95%</td>
</tr>
<tr>
<td>2006</td>
<td>121.67%</td>
<td>2013</td>
<td>160.10%</td>
</tr>
<tr>
<td>2007</td>
<td>126.53%</td>
<td>2014</td>
<td>166.51%</td>
</tr>
</tbody>
</table>
2.1 UNIVERSITY OF ALASKA SOUTHEAST MISSION STATEMENT AND STRATEGIC PLAN

“Mission Statement”
The University of Alaska Southeast is an open enrollment, public university that provides postsecondary education for a diverse student body. University of Alaska Southeast promotes student achievement and faculty scholarship, lifelong learning opportunities, and quality academic programs. The University of Alaska Southeast dedicated itself to the following:

- Achieving distinction as a learning community
- Developing programs and services rooted in its unique natural setting
- Developing educated citizens with a sense of personal ethics
- Serving as a center for culture and arts with a focus on Alaska Native traditions
- Contributing to the economic development of the region and the state through basic and applied research and public service
- Using technology effectively in all programs and services
- Forging dynamic partnerships with other academic institutions, governmental agencies and private industry.

UAS: The Next Decade Strategic Plan for the University of Alaska Southeast 2000-2010
This strategic plan seeks to operationalize the University of Alaska Southeast’s mission and give life to the core values within the context of the region and state. The University community has identified the following seven programmatic goals that call upon UAS to:

- Be the leading liberal arts institution in Alaska
- Be the preferred provider of teacher education programs for potential and current practitioners throughout the state
- Be the premier in-state campus for marine and environmental science programs
- Be the statewide service center for business education
- Be the acknowledged leader for health occupations education in Southeast Alaska
- Be the primary provider of information technology education in the region
- Be the first-choice source of vocational and continuing education for regional citizens and industry

2.2 OVERVIEW AND CURRENT ACADEMIC PROGRAMS

The University of Alaska southeast (UAS) serves over 4,330 students each semester from campuses in Juneau, Sitka, Ketchikan, and outreach locations throughout Southeast Alaska. UAS offers a variety of degrees through distance delivery. These include certificate, associate, and baccalaureate degrees, various professional certifications and endorsements in Education, the Master’s of Public Administration and Master’s of Education Early Childhood Education.
Juneau Campus
This campus is a residential institution located in Alaska’s capital city, along the shores of Auke Lake. The campus offers baccalaureate degrees in liberal arts, with emphasis in art, communication, general studies, government, literature, mathematics, and social science; business administration with emphasis in accounting, management, and general business; biology with emphases in general and marine biology, and environmental science. The Campus also offers Master’s of Arts in teaching at the elementary and secondary levels, and Masters’ in Education and Public Administration. Credential and endorsement programs include early childhood education, elementary education, and educational technology. In addition, the campus offers a variety of certificates, an Associate of Arts degree and Associate of Applied Science degrees in various technical fields.

Ketchikan Campus
The campus is located in Alaska’s southernmost major city, the first port of call for cruise ships entering the state. Instruction is available for the traditional transfer curriculum, Associate of Arts degree, and Associate of Applied Science degrees in business administration, apprenticeship technology, and computer information and office systems (CIOS). The campus offers certificates in accounting technician, small business management, CIOS, and welding technology. A rich variety of continuing education offerings are also available to support community needs.

Sitka Campus
The Sitka Campus is located on Japonski Island in Sitka Sound, which is connected by bridge to the town. The campus offers the Associate of Arts degree, the traditional transfer curriculum, and Associate of Applied Science degrees in CIOS, apprenticeship technology, environmental technology, and health information management. The latter two are entirely distance delivered across Alaska and to students in other states. Certificates in accounting technician, CIOS, environment technology, health information management, law enforcement, coding specialist, welding technology, as well as a wide range of continuing education courses are regularly available.

2.3 COLLEGE ACADEMIC HISTORY

Juneau-Douglas Community College was established in 1956 and Southeastern Senior College was established in 1972. These merged in 1980 to become the University of Alaska – Juneau.

In 1987, the Juneau Campus merged with the community colleges in Ketchikan and Sitka to become a comprehensive regional university. The Ketchikan campus is the oldest campus in the southeast Alaska region. It was established as Ketchikan Community College in 1954 and merged into UAS in 1987. UAS Sitka was founded as Sitka Community College in 1962. It merged with UAS in 1987.
2.4 ENROLLMENT PROFILE

- **Headcounts by Campus:**
 - Juneau Campus: 2,754
 - Ketchikan Campus: 465
 - Sitka Campus: 1,265
 - **TOTAL:** 4,484

- **Student Credit Hours by Campus:**
 - Juneau Campus: 15,398
 - Ketchikan Campus: 2,017
 - Sitka Campus: 4,071
 - **TOTAL:** 21,486

- **Student Full-Time Equivalent (FTE):**
 - Juneau Campus: 1,071
 - Ketchikan Campus: 137
 - Sitka Campus: 273
 - **TOTAL:** 1,481

- **Non-Credit Headcount:**
 - Juneau Campus: 101
 - Ketchikan Campus: 91
 - Sitka Campus: 174
 - **TOTAL:** 366

Source: UA Information Systems UA in Review 2001

2.5 FACILITIES PLANNING ISSUES AND GOALS

- Provide facilities to accommodate a full-time student population of 1,000 at the Juneau Campus and 1,200 region wide by 2005.
- Provide increased opportunities for student activities.
- Provide facilities for the premier in-state campus for marine and environmental science programs.
- Provide living/learning environments with an orientation towards the unique asset of the southeast area region.
To accomplish these programmatic goals, UAS will preserve the attributes that have served it well to this point. In particular, it will:

- Continue its leadership in technology, with the goal of being in the top ten among its peers as a “wired campus.”
- Maintain quality academic support in its library information and media services
- Extend support to its distance students comparable to on-campus services
- Cultivate a student-centered ethos in all programs and services
- Partner with other academic, governmental and private agencies to increase the effectiveness and efficiency of its programs

The Campus Facilities Master Planning Team has reviewed the Mission Statement and Strategic Plan as it relates to the Juneau, Sitka and Ketchikan campuses, and has strived to develop planning concepts that will reinforce these goals and ideas.
3.1 INTRODUCTION AND BACKGROUND

The Facilities Master Plan was developed using a three-phase process consisting of Assessment, Concept, and Implementation. The Assessment phase was developed with the interaction of the campus community: faculty, students, administration, and staff.

The Assessment Phase utilized three methods for ascertaining the facility needs of the campus. The first was the circulation of a Questionnaire that queried specific space needs and overall campus-wide needs. More than 20 Questionnaires were completed and submitted to the planning team. The second method was face-to-face interview(s) conducted on each campus. The first and second methods comprise the “perceived needs”. The third method was an analysis of classroom utilization and calculation of space needs based on enrollment.

3.2 EXISTING SPACE DISTRIBUTION

Investigating the space inventory, provided by the University for the Fall of 2000, is the first step in understanding space needs. The Campus was investigated to see how it is distributed among departments, according to pre-defined space categories (1). This data is compared to the calculated needs to identify excess and shortfalls in facility needs. The calculations, based on industry standards (2) are developed using FTE data provided by the University for Fall of 2000 and estimated enrollment data for the and 2012. Tables 3.2.1 thru 3.2.3 and Figures 3.2.1 thru 3.2.3 itemize and graphically represent current space allocation by room type for the three campuses. The information was compiled from the Campus Physical Space Inventory.
Table 3.2.1 Current Space Distribution by Space Category - Juneau

<table>
<thead>
<tr>
<th>Space Category</th>
<th>Net Assignable Square Footage (NASF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classrooms</td>
<td>19,699</td>
</tr>
<tr>
<td>Department Laboratories</td>
<td>16,110</td>
</tr>
<tr>
<td>Research Laboratories</td>
<td>0</td>
</tr>
<tr>
<td>Faculty Offices</td>
<td>10,721</td>
</tr>
<tr>
<td>Instructional Shops</td>
<td>23,120</td>
</tr>
<tr>
<td>Computer Lab</td>
<td>4,140</td>
</tr>
<tr>
<td>Administration and Clerical Offices</td>
<td>11,146</td>
</tr>
<tr>
<td>Student Services</td>
<td>16,878</td>
</tr>
<tr>
<td>Library</td>
<td>35,274</td>
</tr>
<tr>
<td>Electronic Data Processing</td>
<td>1,319</td>
</tr>
<tr>
<td>Assembly / Exhibition</td>
<td>4,681</td>
</tr>
<tr>
<td>Central Building Service Facilities</td>
<td>9,675</td>
</tr>
<tr>
<td>Student Housing</td>
<td>82,429</td>
</tr>
<tr>
<td>Unassigned</td>
<td>6,868</td>
</tr>
<tr>
<td>Total</td>
<td>242,060</td>
</tr>
</tbody>
</table>

Figure 3.2.1 Current Space Distribution by Space Category
Table 3.2.2 Current Space Distribution by Space Category

<table>
<thead>
<tr>
<th>Space Category</th>
<th>Net Assignable Square Footage (NASF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classrooms</td>
<td>6,263</td>
</tr>
<tr>
<td>Laboratories</td>
<td>10,612</td>
</tr>
<tr>
<td>Offices</td>
<td>4,133</td>
</tr>
<tr>
<td>Instructional Shops</td>
<td>3,543</td>
</tr>
<tr>
<td>Library</td>
<td>4,959</td>
</tr>
<tr>
<td>Central Building Support</td>
<td>1,857</td>
</tr>
<tr>
<td>Total</td>
<td>31,367</td>
</tr>
</tbody>
</table>

Figure 3.2.2 Current Space Distribution by Space Category
Table 3.2.3 Current Space Distribution by Space Category

<table>
<thead>
<tr>
<th>Space Category</th>
<th>Net Assignable Square Footage (NASF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classrooms</td>
<td>9,879</td>
</tr>
<tr>
<td>Laboratories</td>
<td>1,405</td>
</tr>
<tr>
<td>Offices</td>
<td>6,393</td>
</tr>
<tr>
<td>Library</td>
<td>952</td>
</tr>
<tr>
<td>Central Building Support</td>
<td>2,575</td>
</tr>
<tr>
<td>Other</td>
<td>29,616</td>
</tr>
<tr>
<td>Total</td>
<td>50,820</td>
</tr>
</tbody>
</table>

Sitka Campus

Figure 3.2.3 Current Space Distribution by Space Category
3.3 CALCULATED NEEDS

The focus of the space program study lies within the academic core of the campus. Academic related space includes Classrooms, Department Laboratories, and Faculty, Administration, and Clerical Offices. For the Juneau campus this represents a total of 61,816 Net Assignable Square Feet (NASF) or 26% of the total campus space. It is noted here that the 23,120 NASF of Instructional Shop space is not included in the calculated needs section due to the specific space needs of this type of instruction.

Table 3.3.1 identifies the difference between existing space and calculated space, for the three campuses, based on year 2000 enrollment for the academic core.

Table 3.3.1 Existing and Calculated Space Allocation by Category
Academic Core (2000)

<table>
<thead>
<tr>
<th>Space Category</th>
<th>Existing (NASF)</th>
<th>Calculated (NASF)</th>
<th>Excess / Shortfall (NASF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Juneau Campus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classrooms</td>
<td>19,699</td>
<td>13,727</td>
<td>5,972</td>
</tr>
<tr>
<td>Department Laboratories*</td>
<td>20,250</td>
<td>17,485</td>
<td>2,765</td>
</tr>
<tr>
<td>Research Labs</td>
<td>0</td>
<td>2,680</td>
<td>-2,680</td>
</tr>
<tr>
<td>Faculty Offices</td>
<td>10,721</td>
<td>18,634</td>
<td>-7,913</td>
</tr>
<tr>
<td>Admin / Clerical Offices</td>
<td>11,146</td>
<td>6,729</td>
<td>4,417</td>
</tr>
<tr>
<td>Total</td>
<td>61,816</td>
<td>59,255</td>
<td>2,561</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ketchikan Campus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classrooms</td>
<td>6,263</td>
<td>1,793</td>
<td>4,470</td>
</tr>
<tr>
<td>Department Laboratories*</td>
<td>10,612</td>
<td>2,235</td>
<td>8,377</td>
</tr>
<tr>
<td>Offices</td>
<td>4,133</td>
<td>3,429</td>
<td>704</td>
</tr>
<tr>
<td>Total</td>
<td>21,008</td>
<td>7,457</td>
<td>13,551</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sitka Campus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classrooms</td>
<td>9,879</td>
<td>3,586</td>
<td>6,293</td>
</tr>
<tr>
<td>Department Laboratories*</td>
<td>1,405</td>
<td>4,462</td>
<td>-3,057</td>
</tr>
<tr>
<td>Offices</td>
<td>6,393</td>
<td>5,691</td>
<td>702</td>
</tr>
<tr>
<td>Total</td>
<td>17,677</td>
<td>13,739</td>
<td>3,938</td>
</tr>
</tbody>
</table>

*Includes space for computer labs
JUNEAU CAMPUS EXISTING SPACE NEEDS SUMMARY

Classrooms show a surplus of approximately 6,000 NSF (10 classrooms at 30 stations each). This will be increased when the Egan Classroom addition is put into service. A review of the classroom utilization by time and space across the week bear this out. For example the Hendrickson Building (HB) and Hendrickson Annex (HA) are the better-utilized classroom facilities on campus. The busiest period in the HB is 10 AM to 11 AM, Monday through Friday. Yet the percentage of seats occupied is 53% with 73% of the rooms scheduled. The least utilized period between 9 AM and 6 PM for HB is the 9 AM period where only 21% of the available seats are occupied and 15% of the rooms scheduled. The least utilized period for HA is the 4 PM slot with 21% of the seats occupied and 23% of the rooms scheduled. Important to note here, when determining utilization of classroom space available it was assumed that at best we would only utilize 80% of the classroom capacity. This allows for changes in the class size.

With the addition of the Egan Classroom Addition a total of 10,600 NASF of new classroom space will be brought on line. This will give the campus the opportunity to reassign some existing classrooms to other program needs. However, in order to utilize as much of the surplus classroom space as possible it is recommended that the Hendrickson facilities be re-configured to better suit the typical class size.

Department Laboratories show a current surplus of 2,765 NASF. It is important to note here that this number does not include the 23,120 NASF of shop space in the Marine Core building. Data from the Marine Core building was not included for two reasons. First, the specialized nature of these shops tends to skew the space allocation numbers out of proportion, and second the FTE’s assigned to this space account for only 3% of total enrollment.

Table 3.3.2 identifies projected needs out to the year 2012 based on projected FTE’s and subsequent increases in faculty and staff. At Juneau, the projected FTE’s show approximately a 43% increase over the 12-year projection. This data includes the new classroom space in the Egan Classroom Addition.

Table 3.3.2 Existing and Calculated Space Allocation by Category 2012

<table>
<thead>
<tr>
<th>Space Category</th>
<th>Existing (NASF)</th>
<th>2012 Calculated (NASF)</th>
<th>Excess / Shortfall (NASF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classrooms*</td>
<td>30,299</td>
<td>24,044</td>
<td>6,255</td>
</tr>
<tr>
<td>Department Laboratories**</td>
<td>20,250</td>
<td>29,891</td>
<td>-9,641</td>
</tr>
<tr>
<td>Research Labs</td>
<td>0</td>
<td>3,267</td>
<td>-3,267</td>
</tr>
<tr>
<td>Faculty Offices</td>
<td>10,721</td>
<td>31,856</td>
<td>-21,135</td>
</tr>
<tr>
<td>Admin / Clerical Offices</td>
<td>11,146</td>
<td>11,503</td>
<td>-357</td>
</tr>
<tr>
<td>Total</td>
<td>72,416</td>
<td>100,561</td>
<td>-28,145</td>
</tr>
</tbody>
</table>

*Includes addition of 10,600 NASF to Egan
** Includes space for computer labs
Ketchikan Campus

<table>
<thead>
<tr>
<th>Space Category</th>
<th>Existing (NASF)</th>
<th>2012 Calculated (NASF)</th>
<th>Excess / Shortfall (NASF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classrooms</td>
<td>6,263</td>
<td>2,414</td>
<td>3,849</td>
</tr>
<tr>
<td>Department Laboratories*</td>
<td>10,612</td>
<td>3,001</td>
<td>7,611</td>
</tr>
<tr>
<td>Offices</td>
<td>4,133</td>
<td>4,604</td>
<td>-471</td>
</tr>
<tr>
<td>Total</td>
<td>21,008</td>
<td>10,019</td>
<td>10,989</td>
</tr>
</tbody>
</table>

*Includes space for computer labs

Sitka Campus

<table>
<thead>
<tr>
<th>Space Category</th>
<th>Existing (NASF)</th>
<th>2012 Calculated (NASF)</th>
<th>Excess / Shortfall (NASF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classrooms</td>
<td>9,879</td>
<td>7,238</td>
<td>2,641</td>
</tr>
<tr>
<td>Department Laboratories*</td>
<td>1,405</td>
<td>8,998</td>
<td>-7,593</td>
</tr>
<tr>
<td>Offices</td>
<td>6,393</td>
<td>11,476</td>
<td>-5,083</td>
</tr>
<tr>
<td>Total</td>
<td>17,677</td>
<td>27,712</td>
<td>-10,035</td>
</tr>
</tbody>
</table>

*Includes space for computer labs

3.4 PERCEIVED NEEDS

Compiling and assessing the perceived needs involved understanding the current program distribution, perceived space needs, and site requirements. The perceived needs were identified through questionnaires and group interviews.

Juneau Campus. The following chart describes the perceived space needs developed through the interview process. A total of 14,960 Net Assignable Square Feet (NASF) were identified as short-term needs. Long-term needs for all categories totaled 6,812 NASF. The following is a summary of the short term Perceived Needs by space type:

- Faculty and Staff Office: 2,660 NASF
- Shared Offices: 850 NASF
- Administration Support: 1,050 NASF
- Departmental Support and Storage: 600 NASF
- Conference and Seminar: 4,480 NASF
- Classroom: 0 NASF
- Labs and Lab Prep: 5,320 NASF
- Library: 0 NASF

Total Short Term 14,960 NASF
In addition to specific individual space needs, responses were solicited to questions concerning broad campus issues. The following summarizes the responses and are listed in order of frequency. While many different issues were raised by the respondents, only those that garnered multiple responses are identified here.

- **Most Important Assets:**
 1. Location - environment
 2. Quality programs, faculty and staff
 3. Size
 4. Students
 5. Flexibility
 6. Student orientation

- **Most Important Challenges:**
 1. Develop more academic programs
 2. Increase student enrollment and retention
 3. Increase funding for facilities
 4. Continue evolving as a Liberal Arts College
 5. Increase faculty and staff to meet needs of additional enrollment
 6. Improve and increase classroom and office space
 7. Isolation and weather

- **Most Important Facility Needs**
 1. Recreation Center
 2. Classroom and recreation facilities
 3. Office space
 4. Non-classroom/office interior space

Sitka Campus. A facility tour and discussion with key personnel identified the following space issues:

1. Classrooms are at a premium. Typically courses outstrip classroom availability by 5%.
2. Sitka is a receiving site for Distance Learning courses. However the sending site gets credit for the enrollment.
3. Currently 20 to 25 courses are scheduled twice per week. Enrollment averages 2 to 10 students per course.
4. Evening places the biggest pressure on the facilities.
5. Most pressing instructional space needs are:
 - Distance Learning rooms
 - Development of hangar area
 - Vocational programs are driving need to develop hangar area
SECTION III SPACE INVENTORY AND NEEDS ASSESSMENT

Sitka Campus. The following chart describes the perceived space needs developed through the interview process. A total of 15,300 Net Assignable Square Feet (NASF) were identified as needs. The following is a summary of the short term Perceived Needs by space type:

<table>
<thead>
<tr>
<th>Space Type</th>
<th>NASF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty and Staff Office</td>
<td>1,200</td>
</tr>
<tr>
<td>Shared Offices</td>
<td>0</td>
</tr>
<tr>
<td>Administration Support</td>
<td>0</td>
</tr>
<tr>
<td>Departmental Support and Storage</td>
<td>1800</td>
</tr>
<tr>
<td>Conference and Seminar</td>
<td>0</td>
</tr>
<tr>
<td>Classroom</td>
<td>4,500</td>
</tr>
<tr>
<td>Labs and Lab Prep</td>
<td>7,800</td>
</tr>
</tbody>
</table>

Total 15,300 NASF

Ketchikan Campus. The following chart describes the perceived space needs developed through the interview process. A total of 14,960 Net Assignable Square Feet (NASF) were identified as short-term needs. Long-term needs for all categories totaled 6,812 NASF. The following is a summary of the short term Perceived Needs by space type:

<table>
<thead>
<tr>
<th>Space Type</th>
<th>NASF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faculty and Staff Office</td>
<td>600</td>
</tr>
<tr>
<td>Shared Offices</td>
<td>480</td>
</tr>
<tr>
<td>Administration Support</td>
<td>300</td>
</tr>
<tr>
<td>Departmental Support and Storage</td>
<td>600</td>
</tr>
<tr>
<td>Conference and Seminar</td>
<td>200</td>
</tr>
<tr>
<td>Classroom</td>
<td>1,600</td>
</tr>
<tr>
<td>Labs and Lab Prep</td>
<td>4,000</td>
</tr>
<tr>
<td>Library</td>
<td>0</td>
</tr>
<tr>
<td>Computer Lab</td>
<td>400</td>
</tr>
</tbody>
</table>

Total Short Term 8,180 NASF
The following needs were identified during tours of the upper and lower campus and meetings with key personnel:

1. The greatest pressure on classroom scheduling occurs in the evening from 4:30 to 9:00PM.
2. Two types of classes taught: instructor-present and Distance Learning courses
3. There is a shortage of classrooms with 20 to 25-station capacity.
4. Need 5 to 8 additional Distance Learning rooms each with a capacity of 5 to 10 stations.
5. The lower campus schedules on an as-needed basis and therefore needs highly flexible instructional spaces.
 - Welding and maritime courses are the most popular at the lower campus.
 - The Aviation industry is strong in Ketchikan and has potential for academic program development. Instructional support is very expensive.
 - There is a need for additional welding booths with potential for expansion in Boat Shop Room 110.
 - There is potential for partitioning of Room 102 (Diesel Technology) for labs and classrooms.
6. Specific upper campus needs are as follows:
 - Expand Room 106 science lab to 15 stations.
 - Need to re-configure Rooms 203 and 203A to improve efficiency.
 - Potential to expand the elevator lounge Room 200V1 into exterior deck area to provide additional lounge space.
 - Project currently underway to replace folding partition between Rooms 503 and 503A with a solid partition.
4.1 INTRODUCTION – UAS JUNEAU CAMPUS

UAS Juneau Campus site analysis involved an assessment of existing campus land use precincts, vehicular circulation and parking, pedestrian circulation, environmental features and land holdings and acquisition.

The assessment of these elements was then used to develop a composite analysis that identifies opportunities and constraints for future campus development.

4.2 REGIONAL CONTEXT

The UAS Juneau Campus is uniquely located along the shores of fresh water Auke Lake and the salt water environment of Auke Bay. The campus is approximately 11 miles from downtown Juneau via Glacier Highway which serves as the primary access to the campus from the City of Juneau. The natural setting provides the opportunity to offer degree programs in Marine Biology and Environmental Science. Other degree programs in Public Administration and Business Administration benefit from the close proximity to the Capital.

The population base of Southeast Alaska is relatively small (approximately 71,000 at present) which creates a need to attract both regional and out-of-the region students to reach enrollment goals.
4.3 LANDHOLDINGS

The Juneau Campus is located in three areas: (1) the main Juneau Campus on Auke Bay; (2) the Marine Core Building; and (3) Bill Ray Center.

Analysis of the current landholdings at the Auke Bay Campus indicates the potential to acquire additional property that is contiguous to the Campus to provide for future growth and enhance the campus edge. These have been categorized into three levels of priority for acquisition pending availability.

Priority 1:
- Bedford Property adjacent to the Anderson Building. This would permit expansion of science facility and connect to an adjacent parcel of UAS land that is vacant.
- U.S. Forest Service Property to the north of Egan Library. This would allow the core campus to grow in the direction of student housing and future recreation.

Priority 2:
- Bus Barn Property on north side of Bark Loop Road. This has been identified as a site for relocating physical plant.

Priority 3:
- Five Residential Properties located on the east side of Glacier Highway. This would complete the campus edge in this area.
- Vacant land on the north side of this Back Loop Road and west of University Drive.
- Student Activities Center Site (currently being leased). Potential surge space.

An additional area is identified as a potential property that UAS should explore as a land trade. This property is owned by the Presbyterian Church and is located to the north of the existing church buildings. The property is currently used as a parking area for weekend and evening church events and week-day parking for the campus. Discussions between UAS and church leaders indicate future plans for the church to expand the chapel and develop a recreation center. It is recommended that UAS and the church work together to plan future development in a manner that creates a desirable land use pattern that recognizes common needs.
4.4 CAMPUS PRECINCTS

Campus precincts are defined as land use areas that have similar overall functions. The land use areas are created from the assessment of each building use on campus. The building uses are then generalized into land use areas with similar functions. The campus has been organized into five precinct categories. They are Academic, Academic Support, Housing, Student Life, and Central Services.

The UAS Juneau Campus is primarily organized with a campus core Academic/Support precinct. The library, student services, classrooms and faculty and administrative offices are located in this core area. This precinct is organized in a linear pattern with Egan Library anchoring the northern end and administrative and classroom spaces on the south end. Completion of the new library classroom addition in 2002 will shift more campus activity to the zone involving Egan Library, Mourant and Novatney Buildings.

The on-campus student residential living environment is contained in one zone on the north side of Mendenhall Loop Road. This area contains both residence hall and apartment style housing. The location of this housing is somewhat isolated from the Academic/Support core precinct (approximately 2,200’ away) with a major road crossing required.
A student activities center has been developed in a renovated commercial building on the north side of Glacier Highway. This building provides significant activities for the students, but is removed and disconnected from the Academic/Support core area and the Student Housing precinct.

An Academic precinct containing a marine biology program is in the Anderson Building located on Auke Bay south of Glacier Highway. This facility is sited to be in close proximity to the salt-water marine environment. As a result of this environmental relationship, and the barrier of Glacier Highway, this Academic precinct is isolated from the core area of the campus.

There are two Central Service precincts located to serve the campus. The primary area is located off of Glacier Highway. This building provides office space for the facilities services staff. A second area is located on the north side of the Upper Loop Road across from the northern entry point.
Campus Precincts Assessment

- The Student Activities Center is too distant from the campus core area and student housing. Ideally, the location of this type of facility should be in close proximity to both student housing and the academic core area.

- As the need arises for additional on-campus student housing, consideration should be given to the infill of housing to the area immediately north of the Academic/Support core area along the Auke Lake edge. This area could potentially be used for freshman housing with the existing housing precinct used primarily for upper-class and married students. Development of this area is contingent upon the acquisition of this property from the United States Forest Service (USFS). There are also opportunities to expand the existing housing zone with additional student apartments and dorms.

- There are opportunities to infill the core Academic/Support precinct within existing UAS property to the north of Egan Library and the Mourant Building. Acquisition of the USFS property to the north of Egan Library would provide the opportunity to expand and the campus core area. There is also a significant opportunity to develop an upper layer of buildings parallel to the parking area to the north of Whitehead, Novatney and Soboleff (See Composite Analysis Figure). Infill buildings for support/academic uses in this area would also help define a linear “campus green” in the core area.

- The academic precinct could be expanded in the area associated with the Anderson Building. Key to this expansion is the acquisition of the Bedford Property which lies between two parcels of UAS land.

- Ideally, the facilities/services functions of a campus the size of UAS should be organized in one zone. Currently, these functions are located in three different areas. Consideration should be given to expanding the current site on the north side of Upper Loop Road and acquiring the Bus Barn Property to centralize services.

- The future development of the UAS Recreation Center/National Guard Readiness Center Joint Facility to the north of the campus core and southwest of the student housing area, will require well-developed walkways to help link this new precinct with the campus.

- In summary, the precincts of the campus are spatially not connected well due to distance factors, topography and the need for an academic/research area to be located in close proximity to Auke Bay. Efforts should be made to infill the campus academic/support core area with uses that are functionally compatible vs. decentralizing future development in outlying areas of the campus.
4.5 VEHICULAR CIRCULATION AND PARKING

Vehicular circulation and parking were analyzed to determine opportunities to improve campus arrival, mitigate pedestrian/vehicular conflicts and expand or remove roads where appropriate based on an overall campus plan.

- Primary campus entry – the existing entrance off of Glacier Highway is not well defined. Difficult turning movements on curve and awkward alignment of entry road/service road near the Presbyterian Church.
- Existing entry drive lacks sense of arrival. Once you get to the campus core, the road is too close to Hendrickson, Soboleff and Whitehead buildings and the primary pedestrian walkway.
- Existing parking lots are being expanded as per zoning requirements for new classroom building.
- Two bays of existing parking to the north of the Facilities Services Building are dead end parking lots. These could be connected.
- UAS currently utilizes the Presbyterian Church parking lot for parking on weekdays and evenings.
- The secondary entry road off of Back Loop Road provides an interesting approach to the campus. This approach terminates with an excellent view of the campus, distant mountains, Auke Lake, and the Mendenhall Glacier. There is the potential to use this entry road as the primary entrance road. Issues associated with this concept are winter driving on the hill to the south of the entrance on the Back Loop Road and overcoming the idea that this is a back door to the campus.
- Previous master plan identified a new entrance road and bridge across Auke Creek that would provide access from Glacier Highway at a point approximately 500’ to the SE of the existing entrance. This would require property acquisition and environmental/visual issues associated with Auke Lake environment.
- The existing campus road that parallels buildings fronting Auke Lake has the potential to be relocated to the west to provide more open space and building development expansion. This may require use of the Presbyterian Church parking lot property.
- The existing campus road on the west side of Egan and Novatney is currently a dead end with limited ADA, service, and shuttle bus parking. This area has the potential to be developed as open space directly related to the core area buildings.
- Access road to Facilities Services Building is difficult due to grade and alignment. Potential relocation of physical plant would mitigate this issue.
- Parking is determined by zoning City of Juneau ordinance. Campus parking needs should be calculated based on users and be coordinated with Presbyterian Church parking needs.
4.6 PEDESTRIAN CIRCULATION

The pedestrian circulation on campus was analyzed to identify primary pedestrian movement patterns, generators of pedestrian traffic, and pedestrian/vehicular conflict areas. Building generators were determined based upon building use and daily activity. Pedestrian conflict areas were identified where there was a high interaction of pedestrian and vehicular traffic.

Pedestrian Circulation Assessment:
- There are pedestrian/vehicular conflicts in seven areas. The most significant being those that involve crossing Glacier Highway to access the Anderson Building, crossing the Back Loop Road to access the SAC Building and student housing, and along segments of Glacier Highway where there is no walkway.
- The location of the campus road on the west side of Novatney, Whitehead, Soboleff and Hendrickson creates numerous pedestrian/vehicular conflicts. Potential relocation of a segment of this road further west would mitigate this problem.
- The indoor/outdoor circulation path that extends from the Mourant Building to Hendrickson is circuitous. The current floor plan for Whitehead requires pedestrians to walk around the building and interrupts this indoor pedestrian spine.
- Future Pedestrian connections are needed to link student housing and the campus academic support core to the future UAS recreation center.
4.7 ENVIRONMENTAL FEATURES AND REGULATORY FACTORS

A general inventory of environmental features has been developed using data provided by UAS from previous planning projects and from on-site observations. The existing topography, forest cover, hilltop buffers, Auke Lake greenbelt, and setback, stream corridor greenbelts, Glacier Highway buffer, general wetland areas and significant spatial qualities have been mapped on the Environmental Features Figure.

Assessment Summary

- Of the 190.78 acres inclusive of easements and right-of-ways on the UAS Juneau Campus, (not including the acreage associated with recent property acquisition in the vicinity of University Drive) the following statistical data was provided by UAS:
 - 49.83 acres – Land in easements and encumbrances
 - 20.39 acres – Land devoted to greenbelts and open space
 - 126.01 acres – Acres requiring Corp of Engineers permitting prior to development
- There is a 50’ building setback from Auke Lake
- There is a 100’ stream greenbelt corridor for a stream in the northwestern portion of the campus
- The campus has significant environmental constraints associated with steep topography, wetlands, forested areas, bedrock and setback and buffer protrusions. Future development should focus on areas that are the most environmentally suitable with an emphasis on in-filling the existing academic/support campus core area.
- The area between the upper parking area and the Whitehead Building offers the potential to be reconfigured and expanded as a linear “campus green.”
- Views to Auke Lake should be preserved and maximized from campus buildings and walkways.
4.8 COMPOSITE ANALYSIS – UAS JUNEAU CAMPUS

A Composite Analysis map was developed to serve as a framework to guide future campus growth. The map identifies the following:

- Nine future building development zones
- Vehicular circulation and arrival opportunities
- Potential land acquisition parcels
- Potential location of a linear “campus green”
- Significant views

The information provided for the Composite Analysis provided the basis for the site concept options in Section VI.
4.9 SITKA CAMPUS

The Sitka Campus is located on Japonski Island in Sitka Sound in a WWII era hangar. The island is connected by a suspension bridge to the town. While clearly visible from town, the approach to the facility is circuitous. Way-finding for a first-time or casual visitor is difficult.

The entrance to the facility is well marked with a gabled canopy flanked by large evergreen trees. However, the approach to the entrance and parking area lies across a large expanse of tarmac that does not provide sufficient direction.

SITE ASSESSMENT SUMMARY – SITKA CAMPUS

- Improve way finding to the campus form the town and airport through the use of a UAS signage system.
- Enhance sense of entry from Seward Street
- Potential expansion opportunities for new buildings on site within the existing UAS property.
- Future in-fill buildings should be sited to provide a pedestrian open space system that is more “campus like” with walkways, landscaping and well-defined spaces.
4.10 **KETCHIKAN CAMPUS**

The Ketchikan Campus is housed in four buildings located on two sites. The first site is referred to as the “upper campus.” It is located in a residential area in close proximity to the Ketchikan High School. The Ziegler and Paul buildings are located on this campus. The site is characterized by a parking lot framed by buildings on two sides. The parking pavement extends to the buildings and pedestrian walks are undeveloped.

The “lower campus,” contains the Robertson and Hamilton Buildings. It is located directly off Stedman Street in a light industrial/commercial area. Parking is located on the north and east sides of the buildings.

SITE ASSESSMENT OBSERVATIONS: KETCHIKAN

- Way finding to both campuses could be improved with a UAS signage system.
- Site entry points could be enhanced
- Limited building in-fill opportunities on both sides
- Building/ground interface could be enhanced through additional greenspace and landscaping.
5.1 INTRODUCTION

The Space Distribution Concepts provide solutions to the needs identified in the Assessment Phase. The framework for the solutions was established during the campus design charrette held during September 2001. The concepts seek to add space when required, improve utilization of existing space and bring order and organization to the distribution of space across the three campuses.

5.2 UAS – JUNEAU CAMPUS

Egan Library Addition. Completion of this project, currently under construction, will add approximately 10,600 Net Assignable Square Feet (NASF) of classroom space. The space calculations (Section 3.3) indicate a current surplus of approximately 5,700 NASF. In the 2012 calculations, which include the Egan Classroom addition, there remains approximately a 5,600 NASF surplus. However the quality of much of the existing classrooms is not up to current teaching standards and should be renovated or taken offline. The Egan Classroom Addition will allow some of the sub-standard classroom space to be converted to other uses.

Hendrickson Annex. This facility houses the majority of classrooms that are in need of renovation. With the completion of the Egan Classroom Addition UAS will have the opportunity to relocate a portion of the Bill Ray Center (BRC) programs back to campus. Eliminating Classrooms 108, 109, and 110 will make available approximately 1,400 ASF for re-assignment. The following Professional Education Center program can be relocated in close proximity to the Education faculty and staff.

Professional Education Center

- Professional Staff 1,080 NASF
- Clerical Staff 320 NASF

Academic/Student Services Building

Development of a Student Services Building will bring all of the student services functions together in one area for improved efficiency in operation and accessibility to students. Relocation of these functions from Novatney will allow for the expansion of faculty offices. It is also recommended that the senior administration offices be relocated from the Soboleff Annex, a temporary building that has long outlived its intended period of use. The proposed siting of the Student Services building to the center of campus will place the senior administration at the center of the campus.

The following programs are recommended for the Student Services Building:

Business Office 1,040 NASF

- Director 160 NASF
- Accts. Rec. Supervisor 120 NASF
- Grants 120 NASF
- Staff: (6) @ 80ASF ea. 480 NASF
- Cashier 160 NASF
Records Office
- Vice President: 180 NASF
- Assistant Vice President: 160 NASF
- Analyst: 120 NASF
- Fac. Offices: 2 @ 120ASF ea.: 240 NASF

Personnel Office
- Director: 160 NASF
- Assistant Director: 120 NASF
- Staff: 3 @ 80ASF ea.: 240 NASF
- Files: 120 NASF

Student Services
- 4,200 NASF

Administration
- 3,300 NASF

Instructional Space
- Classrooms: 1,800 NASF
- Computer Labs: 1,050 NASF

TOTAL PROGRAM
- 12,850 NASF
Space Distribution Concepts

Armory/Recreation Center. The development of the proposed facility will allow the relocation of the programs currently housed in the Student Activities Center. The vacant SAC can be utilized as surge space as other facilities are renovated or the lease can be terminated.

The Armory/Recreation Center project should include as part of the site component, the development of the South Entrance to the campus.

Science Facilities. Development of the science program at the Juneau campus figure prominently in the institution’s strategic planning. Development and expansion of laboratories and ancillary functions support Initiative 3 of *UAS: The Next Decade, The Strategic Plan for the University of Alaska Southeast.* This has been reflected in the University’s projected increase in enrollment. Currently the labs are located in the Anderson Building on Auke Bay and shared with the University of Alaska Fairbanks Fisheries program. The Fisheries program is tentatively scheduled to be relocated off campus. Expansion of the UAS program will encompass the renovation of the Anderson building and construction of two new facilities.

Anderson Building. The University of Alaska Fairbanks fisheries program currently occupies 5,019 NASF on all levels of the Anderson Building. This space will be available to the UAS science program when the UAF program relocates to new facilities planned for Lena Point adjacent to the new NOAA lab. The UAF facilities represent approximately 50% of the 10,697 NASF of the building. The following program spaces will occupy the newly renovated facility:

1. General Biology Lab 800 NASF
2. Prep Room 160 NASF
3. Physiology Lab 800 NASF
4. Prep Room 160 NASF
5. Upper Division Biology Lab – Sea Water 800 NASF
6. Prep Room 160 NASF
7. Student Study Lounge (Computer Access) 350 NASF
8. Graduate Student Offices 960 NASF
9. Faculty Offices 960 NASF
10. Physics Lab 800 NASF
11. Environmental Sciences Lab 800 NASF
12. Prep Room 160 NASF
13. Physics Equipment Storage 800 NASF
14. Cadaver Storage/Lab 300 NASF
15. General Equipment Storage 450 NASF
16. Departmental Work Room 200 NASF
17. Departmental Storage/Stockroom 200 NASF
18. Departmental Reception/Secretary 120 NASF
19. Department Chairs Office 200 NASF
20. Conference Room 250 NASF

Total Assigned Program 9,430 NASF
New Multiple-Story Building. This new facility will be located within the general vicinity of the Anderson Building. It is anticipated that the structure will be steel frame with wood veneer on block walls. It will be three levels in height at approximately 7,600 GSF per level. The program elements assigned to the new building are as follows:

1. Biology Faculty/Grad Research Labs 4,800 NASF
2. Soils/Sediment/Rock Lab 800 NASF
3. Prep Room 160 NASF
4. Faculty Offices 1,200 NASF
5. Graduate Student Offices 960 NASF
6. Two Student Study Lounges 700 NASF
7. ES Faculty Research Labs 2,400 NASF
8. ES Graduate Research Labs 2,400 NASF
9. Chemistry Lab 800 NASF
10. Prep Room 160 NASF
11. Instrument Room 120 NASF
12. Balance Room 320 NASF
13. Stock Room 1,440 NASF
14. Hazardous Material Storage 200 NASF
15. Chemistry Department Storage 600 NASF
16. Chemistry Faculty, Research Labs 600 NASF
17. General Classroom Space 1,200 NASF
18. Conference Room 250 NASF
19. Seminar Room 400 NASF

Total Assigned Program 19,510 NASF

Marine Sciences Wet Lab Building. This facility will be of a one-story metal, slab-on-grade construction. Pre-engineered Building systems offer inexpensive, free-span, flexible space. The following programs have been segregated from the Andersen Building and new facilities due to excessive odors and need for heavy salt and fresh water tanks.

1. Necropsy/Mammalian Research Lab 600 NASF
2. Seawater Lab 2,600 NASF
3. Dive Locker 600 NASF
4. Greenhouse 400 NASF
5. Wood Shop 300 NASF
6. Machine Shop 300 NASF
7. Storage/Loading Dock 900 NASF
8. Conference Room 250 NASF

Total Assigned Program 5,950 NASF

Physical Plant Facilities. The Physical Plant Facilities are currently housed in several locations. The primary facility, which includes administration offices, staff support, and shops is a converted residence, woefully inadequate to the task. There is no suitably flat area to locate a new facility including parking and shelter for vehicles. A bus garage located on Back Loop Road may be available for purchase by the University. The following program is intended for use in evaluating potential existing facilities or constructing new on a suitable site.
SECTION V SPACE DISTRIBUTION CONCEPTS

Administration/Staff Offices 1,900 NASF

- Director 160 NASF
- Operations Manager 120 NASF
- Project Services Manager 120 NASF
- Health and Safety Officer 120 NASF
- Office Manager 120 NASF
- Property 80 NASF
- Maintenance Supervisor 80 NASF
- Custodial Supervisor 80 NASF
- Architectural Assistant 200 NASF
- Plan File Room 600 NASF
- Administrative Assistant 100 NASF
- Reception 120 NASF

Central Storage/Shop Facility 8,800 NASF

- Storage 8,000 NASF
- Carpentry Shop 400 NASF
- Plumbing Shop 200 NASF
- Electrical Shop 200 NASF

Vehicle Storage/Maintenance Shelter 3,900 GSF

- Large Dump Truck
- Small Dump Truck
- Large Front End Loader
- Small Front End Loader
- Repair and Expansion Bays
5.3 UAS – SITKA CAMPUS

The two most pressing needs at the Sitka facility are bringing the hangar activities into code compliance and increasing the amount of Distance Learning facilities. The plans currently proposed for the facility will meet these requirements. The program cannot be entirely justified based upon current and projected enrollment. However, the nature of a Community College is such that the facilities need to be responsive to the local industry needs and grant-driven programs. The following represents the new program additions planned for the facility.

- Student Resource Area
- Faculty Resource Area
- 2 Classrooms
- Lounge
- Storage

5.4 UAS – KETCHIKAN CAMPUS

The Ketchikan facilities are located on two sites: the upper campus with the Ziegler and Paul buildings and the lower, waterfront campus with the Hamilton/Robertson building. The central issue regarding facilities in Ketchikan is the need to upgrade existing program space to meet current and projected need. The following projects will improve and expand the outdated science lab in the Ziegler Building and develop Environmental Science facilities at the Hamilton/Robertson Building.
6.1 INTRODUCTION

In September of 2001, the master planning team held a design “Charrette” workshop on campus to gain input from the University community and to develop alternative plans for further evaluation. The purpose of developing alternative plans was to explore design options related to land use, future building zones, open space and campus circulation. Evaluation of the options would then provide the basis from which to develop a “preferred” master plan.

6.2 CONCEPT ALTERNATIVES

- **Option 1**
 This option is based on the concept of establishing the north entrance off Back Loop Road as the only public entrance to the core area of the campus. The entry would align with the access to the proposed student recreation and armory complex located on the north side of the Back Loop Road. These two entry points at one intersection would provide the opportunity to develop a well-defined entrance area for the campus off of the Loop Road. The existing entrance from Glacier Highway would be used for access to the Church property and emergency/service access for the campus.

 The existing road located on the west side of the campus building is removed to provide the opportunity to create a “campus green” that would extend as a linear “campus green” from the library to the Hendrickson Building. This area would be pedestrian oriented and allow vehicle access for service and emergency vehicles only.

 Development zones for new buildings are identified to provide a logical “in-fill” of the campus. A primary building site is identified in the eastern side of the existing parking lot that would overlook the campus green. Building in this location would further define the western edge of the green space.

- **Options 2 & 2B**
 These options vary from Option 1 through the development of a new primary entrance drive off of Glacier Highway to the south of the existing entrance. This entry road would provide access for both the campus and church facilities. A bridge would be required and visual, environmental and traffic related issues would need to be addressed with this concept.

 Building development zones are similar to Option 1 with the exception of future student housing expansion occurring in the existing housing precinct.

 Option 2B realigns the entry road to the west of the current location to provide the opportunity to create a “campus green.” This scheme requires coordination with the church to facilitate a land trade, lease, easement or acquisition to allow for the entry road relocation.

- **Option 3**
 This plan realigns the existing primary entry drive of Glacier Highway and relocates this road within the campus similar to Option 2B. A linear “campus green” is also a component of this option.
6.3 CAMPUS ENTRY STUDY

Background

The campus facilities master plan for UAS that was completed in February 2002, recommended the relocation of the primary campus vehicular entrance. The existing entrance located off of Glacier Highway currently serves both the University and a church. Evaluation of this entrance indicated conditions that were not desirable for use as the primary campus entry. These included poor site distances at the intersection of Glacier Highway and inadequate turning radii along the road. Access to the campus via this entry road also approaches the campus from the “back side” in a sequence that provides initial entry to the church property.

The master plan identified three options for the primary campus entry. The preferred option involves the enhancement of the current entry located off of Back Loop Road. This entry aligns with the proposed entrance road that will service the UAS Recreation Facility/National Guard Readiness Center Joint Facility. Once this facility is completed, an intersection will be formed that provides access to both the main campus on the south side of Back Loop Road and the UAS Joint Use Facility on the north. The Master Plan further recommends that the current campus entry road off of Glacier Highway be used only for general access to the church and for emergency access to the campus.

The selection of this entry alternative created the need to analyze how the proposed UAS Joint Use Facility entrance road design could be integrated with enhancements to the current Back Loop Road entrance. This new arrival intersection provides a significant opportunity for enhancement as the primary campus entry.

A design “charrette” was held at the campus on March 5, 2002 for the purpose of identifying goals, images and concepts for the primary campus entry. Participants included senior UAS administrators. The Cuningham Group/The Saratoga Associates design team and representatives from Jensen Yorba Lott, a Juneau architectural firm. The results of the charrette are documented in the following narrative and drawings.

Site Entry Goals:

- Establish a primary entrance for the campus that provides a prominent image and identify for UAS.

- Develop a comprehensive concept that includes the access entry to the proposed UAS Joint Use Facility and pedestrian circulation needs associated with campus housing links to the campus core area.

- Develop an entry design that conforms to highway engineering design and safety standards.
Ideas/Images:

- Welcoming
- Prominent
- Reflect upon UAS as a “community” within a “community”
- Openness
- Use of indigenous/native materials
- Interpret/symbolize native culture
- Develop a common entry concept that includes UAS Joint Use Facility entry
- Emphasize natural environment – “UAS is a place to learn in a beautiful environment”
- Vertical elements – Potential use of totems
- Glacial rocks/boulders
- Lighting
- Sign(s) + UAS logo
- Consider how project can be phased
- Consider expansion of right-of-way to allow for turn lanes and center islands
- Consider change in paving color at entrance, i.e. color contrast with existing road pavement.

Analysis

The development of the UAS Recreation Facility National Guard Readiness Center Joint Facility provides the opportunity to create a primary arrival/entry point for the university. Arrival at this intersection on Back Loop Road should provide a sense of arrival and orientation for both the main campus and the Joint Use Facility. The design treatment should unify both sides of Back Loop Road through landscape, identification signage and other elements used in the design. Key to the success of this entry/arrival area is the need to develop a comprehensive design for both sides of Back Loop Road at the entry points.

The need to provide turning lanes, traffic signalization, appropriate site triangles and site distances and potential median islands should be analyzed with a traffic study of the intersection. The initial concepts that have been identified through the “charrette” process require a thorough analysis with appropriate highway design criteria.
Existing campus entry off of Back Loop Road. This entry will become more significant as a campus arrival point with the completion of the UAS Recreation Facility/National Guard Readiness Center Joint Facility.

Location of proposed entrance to UAS Recreation Facility/National Guard Readiness Center Joint Facility. It is directly opposite the campus entry off of Back Loop Road.
Concepts

Three options have been developed for the primary entry/arrival zone. These options all involve the alignment of the campus entry road with the proposed UAS Joint Facilities access road. The options are described as follows:

Option A
This concept incorporates the use of median islands within Back Loop Road, the campus entry road and the UAS Joint Facilities road. Turn lanes are also provided. It is proposed that the median islands be landscaped with turf and signage be located in the campus entry and UAS Joint Facilities medians. The signage should be more dominant for the campus entry road median. Identification signage for the UAS Joint Facilities median should be developed with a design vocabulary that is compatible with the campus entry sign.

It is proposed that the existing campus walkway that connects campus housing with the campus core be re-routed so that pedestrians will cross at the proposed intersection. Selected clearing of vegetation is recommended to provide for the correct sight triangle and to create a sense of an open arrival for the campus.

Option B
Option “B” is similar to Option “A” with the exception of the elimination of the median island located within the UAS Joint Use access road.

Option C
Option “C” substitutes striping to establish turn lanes instead of the median islands within Back Loop Road. Landscaped islands remain for the campus entry and UAS Joint Facilities road.

Recommendations

It is recommended that the next step in the design process for the campus entrance involve a traffic study to identify the appropriate design criteria for lane widths, medians, turning lanes, stacking requirements, sight distances and potential traffic signalization. Widening of the right-of-way should also be considered to accommodate median islands based on highway engineering requirements.

The design of the UAS identification sign should clearly portray the name of the university and, if appropriate, incorporate the logo. The sign should also be illuminated and the letter font size should be based upon the design speed of Backloop Road. Two concept sketch ideas are included in this study to serve as a starting point for the actual design. The first involves an abstract whale shape that could be native stone with text attached. The second idea would be a more traditional entry sign with vertical elements at the four corners to symbolize totems and the Native American culture. The use of native plants and indigenous stone is incorporated into both ideas.
7.1 INTRODUCTION

The Implementation Plan identifies specific project budgets and schedules based on project scope and priorities developed during the Concept. The Implementation Plan divides individual projects into related ‘Groups’ and then schedules them in a sequential manner based on priorities, funding and dependency on previous projects.

Project Budget Basis

Project costs consist of ‘hard’ (probable construction cost) plus Technology Infrastructure (Tech) at 6 percent of hard costs, Furniture, Fixtures and Equipment (FF&E) at 7 percent; plus ‘soft’ costs (approvals, surveys, testing & design) at 10 percent. Project Budgets are estimated based on mid-year 2001 construction costs. Annual inflation, calculated at a rate of 4% per year is incorporated in the following Implementation Chart. Table 7.1.2 delineates the rate increase multiplier for a particular year using the base 2001 cost estimate. The per square foot cost ranges used in the Implementation Plan for various levels of work are noted in Table 7.1.1.

Table 7.1.1 – Project Cost Square Per Square Foot Basis

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>New Construction (highly technical)</td>
<td>$285</td>
<td>$17</td>
<td>$20</td>
<td>$28</td>
<td>$350</td>
</tr>
<tr>
<td>New Construction (non-technical)</td>
<td>$235</td>
<td>$14</td>
<td>$23</td>
<td>$35</td>
<td>$307</td>
</tr>
<tr>
<td>Major Renovation (highly technical)</td>
<td>$250</td>
<td>$15</td>
<td>$25</td>
<td>$37</td>
<td>$327</td>
</tr>
<tr>
<td>Major Renovation</td>
<td>$150</td>
<td>$9</td>
<td>$15</td>
<td>$22</td>
<td>$196</td>
</tr>
<tr>
<td>Minor Renovation</td>
<td>$60</td>
<td>$4</td>
<td>$6</td>
<td>$8</td>
<td>$78</td>
</tr>
<tr>
<td>Relocation Only</td>
<td>$7</td>
<td>$2</td>
<td>$1</td>
<td>$1</td>
<td>$11</td>
</tr>
</tbody>
</table>

Site project budgets were generated in a similar manner based on square foot or lump sum amounts.

Table 7.1.2 – Cumulative Interest Multipliers of 2001 $ Based on an Assumed 4% Yearly Escalation Rate.

<table>
<thead>
<tr>
<th>YEAR</th>
<th>MULTIPLIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>100.00%</td>
</tr>
<tr>
<td>2002</td>
<td>104.00%</td>
</tr>
<tr>
<td>2003</td>
<td>108.16%</td>
</tr>
<tr>
<td>2004</td>
<td>112.49%</td>
</tr>
<tr>
<td>2005</td>
<td>116.99%</td>
</tr>
<tr>
<td>2006</td>
<td>121.67%</td>
</tr>
<tr>
<td>2007</td>
<td>126.53%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>YEAR</th>
<th>MULTIPLIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>131.59%</td>
</tr>
<tr>
<td>2009</td>
<td>136.86%</td>
</tr>
<tr>
<td>2010</td>
<td>142.49%</td>
</tr>
<tr>
<td>2011</td>
<td>148.02%</td>
</tr>
<tr>
<td>2012</td>
<td>153.95%</td>
</tr>
<tr>
<td>2013</td>
<td>160.10%</td>
</tr>
<tr>
<td>2014</td>
<td>166.51%</td>
</tr>
</tbody>
</table>

Please click star to access more appendices.