STAT S107 – Survey of Statistics

Upon successful completion of this course, students will be able to:

- 1. Distinguish between descriptive and inferential statistics, and between observational and experimental studies.
- 2. Distinguish between populations and samples, the various types of variables, types of data, and levels of measurement, and the various sampling techniques.
- 3. Organize data into appropriate frequency distributions.
- 4. Construct and interpret graphical displays of data, including Pie and Pareto Charts, histograms and boxplots, scatterplots.
- 5. Compute and interpret measures of central tendency, spread, and position.
- 6. Distinguish between classical and empirical probability. Use appropriate probability rules to compute and interpret results. Apply counting rules for combinations and permutations.
- 7. Distinguish between discrete and continuous probability distributions, and apply the central limit theorem as appropriate. Compute and interpret probabilities from binomial, normal, and Student's t-distributions.
- 8. Compute confidence intervals for population means and proportions. Correctly state hypotheses and apply methods appropriate for single of population means and proportions. Note: The traditional method, or the p-value method, or both may be used.
- 9. Conduct a simple regression (and correlation) analysis. This includes fitting data to a simple regression model and using the fitted model in predictions.

STAT S200 – Elementary Statistics

Upon successful completion of this course, students will be able to:

- 1. Distinguish between descriptive and inferential statistics; and observational, experimental and quasi-experimental studies.
- 2. Distinguish between populations and samples, and the various types of variables, types of data, and levels of measurement, and between the various sampling techniques.
- 3. Organize data into appropriate frequency distributions. Construct and interpret graphical displays of data, including Pie and Pareto Charts, histograms and boxplots, scatterplots.
- 4. Compute and interpret measures of central tendency, spread, and position.
- 5. Distinguish between classical and empirical probability. Identify and/or perform probability experiments and use appropriate probability rules to compute and interpret results.
- 6. Distinguish between discrete and continuous probability distributions, and apply the central limit theorem as appropriate. Compute and interpret probabilities and quantiles from binomial, normal, t-, chi-square and F-distributions.
- 7. Compute confidence intervals for population means, variances and proportions.
- 8. Correctly state hypotheses and apply methods appropriate for single and two-sample tests of population means, variances, and proportions.

- 9. Perform a one-way ANOVA to compare three or more population means, and interpret results. Correctly state hypotheses for contingency table chi-square tests and correctly interpret results. Note: The traditional method, or the p-value method, or both may be used.
- 10. Conduct a simple regression (and correlation) analysis.

STAT S373 – Probability and Statistics

Upon successful completion of this course, students will be able to:

- 1. Compute probabilities corresponding to prescribed events in a discrete sample space, including conditional and posterior probabilities.
- 2. Derive, interpret, and apply properties of discrete and continuous random variables, including probability density functions, expected value, variance, cumulative density functions, moment generating functions, covariance, and correlation coefficients.
- 3. Compute point estimates for parameters, including unbiased estimators and maximum likelihood estimators.
- 4. Create tests of hypotheses and be able to calculate rejection regions, significance levels, and p-values.
- 5. Calculate the probability of a type II error for a parameter space of size two.

STAT S400 – Statistical computing with R

Upon successful completion of this course, students will be able to:

- 1. Perform elementary and complex operations with numeric, character, and logical vectors. Extend these methods to matrices, data frames, lists and arrays.
- 2. Construct and apply simple and compound conditional statements, as well as simple and nested looping structures.
- 3. Apply built-in low- and high-level graphical functions to the construction of basic and enhanced graphical images.
- 4. Design original and well-documented code, including user-defined functions, to implement complex numerical and/or statistical methods.

STAT S401 – Regression and Analysis of Variance

Upon successful completion of this course, students will be able to:

- 1. Identify and apply appropriate linear models for use in the analysis of designed experiments and observational studies, and state relevant model assumptions.
- 2. Perform appropriate exploratory data analysis and/or structural, residual, outlier, influence and multi-collinearity diagnostics for fitted models. Implement remedial measures as appropriate/needed.
- 3. Apply variable and model selection methods to identify the best model and apply the chosen model to estimation and prediction tasks.
- 4. Apply appropriate pairwise comparison methods or tests of general contrasts and interpret results.