University of Alaska – Southeast
FY17 Facilities Benchmarking & Analysis
Comprehensive Facilities Intelligence Solutions

FACILITIES ASSESSMENT & PLANNING
Plan and execute capital investment plans that are inclusive, credible, flexible, affordable and sustainable.

SPACE UTILIZATION
Ensure your space is working up to its full potential.

SUSTAINABILITY SOLUTIONS
Measure and improve environmental stewardship.

FACILITIES BENCHMARKING & ANALYSIS
Take control of your facilities and make the case for change without the guesswork.
Vocabulary for Facilities Benchmarking & Analysis

Annual Stewardship
The annual investment needed to ensure buildings will properly perform and reach their useful life “*Keep-Up Costs*”.

Asset Reinvestment
The accumulation of repair and modernization needs and the definition of resource capacity to correct them “*Catch-Up Costs*”.

Operational Effectiveness
The effectiveness of the facilities operating budget, staffing, supervision, and energy management.

Service
The measure of service process, the maintenance quality of space and systems, and the customers opinion of service delivery.

Asset Value Change

Operations Success
University of Alaska – Southeast Peer Institutions

Return on Physical Assets (ROPA+) includes all space at UAS totaling 576,240 GSF

<table>
<thead>
<tr>
<th>Facilities Peer Institutions</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penn State - DuBois</td>
<td>DuBois, PA</td>
</tr>
<tr>
<td>Penn State - Fayette</td>
<td>Fayette County, PA</td>
</tr>
<tr>
<td>Penn State – Hazleton</td>
<td>Penn State, PA</td>
</tr>
<tr>
<td>Penn State - Mont Alto</td>
<td>Mont Alto, PA</td>
</tr>
<tr>
<td>Penn State - Wilkes-Barre</td>
<td>Luzerne County, PA</td>
</tr>
<tr>
<td>University of Maine at Farmington</td>
<td>Farmington, ME</td>
</tr>
<tr>
<td>University of Maine at Fort Kent</td>
<td>Fort Kent, ME</td>
</tr>
<tr>
<td>University of Maine at Machias</td>
<td>Machias, ME</td>
</tr>
<tr>
<td>University of Maine at Presque Isle</td>
<td>Presque Isle, ME</td>
</tr>
<tr>
<td>University of Minnesota Morris</td>
<td>Morris, MN</td>
</tr>
</tbody>
</table>

Comparative Considerations

Size, technical complexity, region, geographic location, and setting are all factors included in the selection of peer institutions.
Core Campus Observations

Space
- UAS is in a great position through history of renovations and strategic growth
- With on-campus enrollment decreasing, look for opportunities to leverage current inventory of space to maximize program effectiveness
- Anticipated addition of the Auke Bay Marine Station (ABMS) facility will require additional operational and capital resources

Operations
- All trades shops are scoring higher than peers
- Operating expenditures are similar to peers when you regionally adjust the costs

Capital
- Major renovations and Utility Infrastructure projects have been the primary focus of UAS’s funding historically
- Evaluate the balance of needs in new space and older facilities; balance the options for targeting requests for different facilities
UAS’s Technical Complexity is Close to Peer Average

Less technically complex spaces are typically easier to maintain

Technical Complexity

Areas Impacted by Tech Rating

- Energy Consumption
- Maintenance Staffing
- Replacement Values
- Stewardship Targets
- Operational Demand

Institutions arranged by Technical Complexity

Sightlines Database
UAS’s Campus has Changed Significantly

UAS’s on-campus enrollment has significantly decreased, making campus less busy.
UAS’s Campus Has the Lowest Density Amongst Peers

Density factor measures the busyness of campus

Change in *Density at UAS

<table>
<thead>
<tr>
<th>Year</th>
<th>Users FTE / 100,000 GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>300</td>
</tr>
<tr>
<td>2007</td>
<td>280</td>
</tr>
<tr>
<td>2008</td>
<td>260</td>
</tr>
<tr>
<td>2009</td>
<td>240</td>
</tr>
<tr>
<td>2010</td>
<td>220</td>
</tr>
<tr>
<td>2011</td>
<td>200</td>
</tr>
<tr>
<td>2012</td>
<td>180</td>
</tr>
<tr>
<td>2013</td>
<td>160</td>
</tr>
<tr>
<td>2014</td>
<td>140</td>
</tr>
<tr>
<td>2015</td>
<td>120</td>
</tr>
<tr>
<td>2016</td>
<td>100</td>
</tr>
<tr>
<td>2017</td>
<td>80</td>
</tr>
</tbody>
</table>

Areas Impacted by Density Factor

- Wear and Tear on Space
- Custodial Operations
- Energy Demand

Institutions arranged by Density Factor

<table>
<thead>
<tr>
<th>Density Factor</th>
<th>Users / 100,000 GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAS</td>
<td>289.18</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
</tbody>
</table>

Density is calculated using On-Campus Student FTEs
UAS Has More Low-Risk Space Than Peers

Plan ahead for currently low risk space as needs will come due concurrently

Campus Renovation Age by Category

- **High Risk**
 - Buildings Over 50: Life cycles of major building components are past due. Failures are possible. Core modernization cycles are missed.
 - Highest risk
 - Higher Risk
 - Buildings 10 to 25: Short life-cycle needs; primarily space renewal.
 - Medium Risk
 - Low Risk

<table>
<thead>
<tr>
<th>Category</th>
<th>UAS</th>
<th>Peer Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 10 - Low Risk</td>
<td>37%</td>
<td>29%</td>
</tr>
<tr>
<td>10 to 25 - Medium Risk</td>
<td>27%</td>
<td>27%</td>
</tr>
<tr>
<td>25 to 50 - Higher Risk</td>
<td>9%</td>
<td>25%</td>
</tr>
<tr>
<td>Over 50 - Highest Risk</td>
<td>2%</td>
<td>25%</td>
</tr>
</tbody>
</table>
UAS Boasts a Significantly Younger Campus Age

UAS has renovated many buildings to reduce the age of campus

Construction vs. Renovation Age

- UAS Construction Age
- UAS Renovation Age
- Average Peer Construction Age
- Average Peer Renovation Age

Age dropped due to renovations of the Sitka Hangar 332 and Student Housing Units A, B, D & G

Peers: 10-year delta
UAS’s Renovation Age is 21 years less than Peers
UAS: 15-year delta
Changes to Campus Since “2012 Master Plan”

Renovation Age Profile in 2017

- 2012 Reno. Age: 51%
- Additions: 21%
- Renovations: 19%
- Demolitions: 7%
- Aging Facilities 2012-2018: 32%

2017 Reno. Age: 37%

- Under 10: Low Risk
- 10-25: Medium Risk
- 25-50: High Risk
- 50+: Highest Risk

Facilities:
1. JRP
2. Hendrickson
3. Student Housing A
4. Student Housing B
5. Student Housing D
6. Student Housing G
7. Sitka Hangar
8. Ray, Bill Center
9. Tappe House
10. Ellsworth House
11. Gitkov (Bookstore)
12. Schaible House

© 2017 Sightlines, LLC. All Rights Reserved.
Capital Profile
Both new construction and renovations are changing the face of campus

Capital Spending

Total Capital Investment

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total $ in Millions</td>
<td>$3.49</td>
<td></td>
</tr>
</tbody>
</table>

- **Existing Space**
 - Exterior Doors
 - Windows
 - Pointing
 - Roofs
 - Insulation
 - Gutters
 - Mechanical Systems
 - HVAC Projects
 - Electrical Systems
 - Carpeting
 - Painting
 - Replacement of Light Fixtures
 - Furniture Replacement
 - Room reconfiguration
 - ADA Work
 - Fire/Sprinkler Systems
 - Asbestos Removal

- **Infrastructure**
 - Utility: Work Done on Central Utility Plants
 - Utility: Underground Piping
 - Grounds: Sidewalks
 - Grounds: Parking Lots
 - Grounds: Signage
 - Grounds: Grass and Turf Fields

- **Non-Facilities**
 - Master Plans
 - Feasibility Studies
 - IT
 - Equipment Purchases

- **New Space**
 - Any addition of GSF (new construction, additions to existing buildings)
Defining an Annual Investment Target

Annual Funding Target: $4.5M

FY17 Annual Investment Target

- **Depreciation model based on replacement value of each building**: $10.2M
- **Life Cycle Need**: $8.5M
- **Annual Investment Target**: $4.5M

Replacement Value: $339M

- **Envelope/Mechanical**
- **Space/Program**
Capital Funding Sources

Total Operations and Asset Funding

Alaska Terminology
- Utilities & Grounds
- Custodial

Sightlines Terminology
- Operations & Maintenance
 - People
 - Expenses
 - Utilities
 - Daily Service & PM

Fund 1
- Maintenance & Repair – M&R

Fund 2-9
- Repair & Renew - R&R

Projects
- Recurring Project Dollars
- One-Time Project Dollars
- Annual Stewardship
- Asset Reinvestment
Capital Investment Exceeds Targets in Recent Years

UAS’s renovations stabilize future need and keep funding targets from growing rapidly.
Annual Stewardship is Stronger at UAS

Recurring funding is becoming less reliable

Total Capital Investment as a Percent of Funding Target

University of Alaska – SE

Peer Institutions

Capital Spending % of Total Target

Annual Stewardship
Asset Reinvestment
Average

Target

90%
70%

Recent Renovations decreasing Asset Reinvestment Need

UAS has addressed life cycles by completing renovations

Total Asset Reinvestment Need $/GSF (Regionally Adjusted)

<table>
<thead>
<tr>
<th>Year</th>
<th>University of Alaska – SE</th>
<th>Peer Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>$100</td>
<td>$20</td>
</tr>
<tr>
<td>2007</td>
<td>$105</td>
<td>$25</td>
</tr>
<tr>
<td>2008</td>
<td>$110</td>
<td>$30</td>
</tr>
<tr>
<td>2009</td>
<td>$115</td>
<td>$35</td>
</tr>
<tr>
<td>2010</td>
<td>$120</td>
<td>$40</td>
</tr>
<tr>
<td>2011</td>
<td>$125</td>
<td>$45</td>
</tr>
<tr>
<td>2012</td>
<td>$130</td>
<td>$50</td>
</tr>
<tr>
<td>2013</td>
<td>$135</td>
<td>$55</td>
</tr>
<tr>
<td>2014</td>
<td>$140</td>
<td>$60</td>
</tr>
<tr>
<td>2015</td>
<td>$145</td>
<td>$65</td>
</tr>
<tr>
<td>2016</td>
<td>$150</td>
<td>$70</td>
</tr>
<tr>
<td>2017</td>
<td>$155</td>
<td>$75</td>
</tr>
</tbody>
</table>

© 2017 Sightlines, LLC. All Rights Reserved.
Addressing Future Need Strategically

Understanding timeframe and type helps to prioritize needs

Current Need
- What on campus is currently broken, operating at a significantly higher cost, or requires significantly more time to maintain?

Lifecycle Need
- What building needs will come due in the next 10 years?
 - Building Exteriors
 - Electrical
 - HVAC
 - Interiors
 - Plumbing
 - Roofing

Remaining Need
- Infrastructure & modernization
 - Sightlines estimate

Total 10 Year Need

- Millions
 - $34
 - $34
 - $1

- $0 - $80

© 2017 Sightlines, LLC. All Rights Reserved.
Addressing Future Need Strategically

Historical investment levels would address current and renewal need

Total 10 Year Need

- **Current Need**
 - 2018: $0
 - 2019: $2
 - 2020: $34
 - 2021: $34
 - 2022: $34
 - 2023: $34
 - 2024: $34
 - 2025: $34
 - 2026: $34
 - 2027: $34

- **Renewal Need**
 - 2018: $0
 - 2019: $2
 - 2020: $34
 - 2021: $34
 - 2022: $34
 - 2023: $34
 - 2024: $34
 - 2025: $34
 - 2026: $34
 - 2027: $34

- **Modernization & Infrastructure**

- **Average Hist. Investment** - $3.4M / Year

© 2017 Sightlines, LLC. All Rights Reserved.
Operations Success
Daily Operating Expenditures

Facilities Operating Actuals

Total $ in Millions

$0.0
$1.0
$2.0
$3.0
$4.0
$5.0
$6.0
$7.0

Daily Service
PM
Utilities

Facilities Operating Actuals

$0.0
$2.0
$4.0
$6.0
$8.0
$10.0
$12.0

© 2017 Sightlines, LLC. All Rights Reserved.
Daily Operating Costs Inline with Peers

FY17 Facilities Operating Actuals (Regionally Adjusted)

<table>
<thead>
<tr>
<th>$/GSF</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6.00</td>
</tr>
<tr>
<td>$5.75</td>
</tr>
<tr>
<td>$5.00</td>
</tr>
</tbody>
</table>

Daily Service, PM, Avg.
UAS Outperforming Peers in Inspection

- **Maintenance Coverage**
 - UAS: 60,000
 - Peers: 80,000

- **Custodial Coverage**
 - UAS: 50,000
 - Peers: 40,000

- **Grounds Coverage**
 - UAS: 20.0
 - Peers: 10.0

- **General Repair Scores**
 - UAS: 3.9
 - Peers: 3.3

- **Cleanliness Scores**
 - UAS: 3.9
 - Peers: 3.6

- **Grounds Scores**
 - UAS: 3.7
 - Peers: 3.2
UAS is consuming less energy than peer institutions

* Peer Institutions use a fossil fuel mix of Natural Gas, Oil #2, Propane, Wood. On average, Peer Institutions primarily use 80% Natural Gas & 20% other Fossil Fuels
Energy Expenses Continue to Decrease

$1.2M in savings since 2012

Total Energy Consumption vs. Peers

<table>
<thead>
<tr>
<th>Year</th>
<th>University of Alaska – SE</th>
<th>Peer Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>$48.74</td>
<td>$40.27</td>
</tr>
<tr>
<td>2013</td>
<td>$48.74</td>
<td>$40.27</td>
</tr>
<tr>
<td>2014</td>
<td>$48.74</td>
<td>$40.27</td>
</tr>
<tr>
<td>2015</td>
<td>$48.74</td>
<td>$40.27</td>
</tr>
<tr>
<td>2016</td>
<td>$48.74</td>
<td>$40.27</td>
</tr>
<tr>
<td>2017</td>
<td>$48.74</td>
<td>$40.27</td>
</tr>
</tbody>
</table>
Conclusion
Key Takeaways

• UAS has made great strides in reducing the need of campus both through renovations and addressing lifecycles of building systems as they have come due
 • This has also had the effect of installing more efficient systems that have served to decrease the total electrical consumption of campus over time

• There is room to grow on-campus population in Juneau, both in space and operationally

• Continue addressing need that is coming due to keep backlog at bay as any additional buildings like ABMS come into the campus fold
Facilities Scorecard

Measuring and Tracking

Key Performance Indicators
What are the goals of the score card?

What is driving these measurements?

What is driving the categories?

<table>
<thead>
<tr>
<th>Facilities Council Scorecard</th>
</tr>
</thead>
<tbody>
<tr>
<td>As of November 7, 2017</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Work Management Efficiency</th>
<th>Objectives</th>
<th>Measures</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Save money</td>
<td>Customer Service Satisfaction Surveys</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Process improvement</td>
<td>Time to Complete WOs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organizational optimization</td>
<td># of WOs /year</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>WOs by type</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Cost Reduction</th>
<th>Objectives</th>
<th>Measures</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Save money</td>
<td>Annual Utilities Consumption $/GSF BTU/GSF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Efficient Processes</td>
<td>M&R Current vs. SSCM Goal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Better user experience</td>
<td>Peer comparison of resources ($ and FTE / GSF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Annual Preventive and Reactive Maint.; and Renewal and Repurposing $/GSF & FTE/GSF</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deferred Maint. Backlog Reduction</th>
<th>Objectives</th>
<th>Measures</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Better user experience</td>
<td>Cost Impact on backlog Expenditure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Save money</td>
<td>Change in NAV over time</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Off-campus Lease Reductions</th>
<th>Objectives</th>
<th>Measures</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Reduce operating budget cost</td>
<td>Change in # of leases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase utilization of existing facilities</td>
<td>Change in Annual off-campus lease costs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase collaboration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase student access</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Space Utilization</th>
<th>Objectives</th>
<th>Measures</th>
<th>Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Increase usage of owned space</td>
<td>Classroom Utilization (Student FTE/GSF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce need for new facilities</td>
<td>Student/GSF of non-research Space</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce operating budget cost</td>
<td>Students/GSF of Research Space</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase space available for programs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Performance Indicator Example

Sample KPI Results

<table>
<thead>
<tr>
<th>Category</th>
<th>Sub-Category</th>
<th>Metric</th>
<th>Our Numbers</th>
<th>Target</th>
<th>Weighting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space</td>
<td>Renovation Age</td>
<td>Percent of space < 25 years old</td>
<td>66.03%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Academic Space</td>
<td>Academic Space Per Student (GSF/Student)</td>
<td>418.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital</td>
<td>Annual Stewardship</td>
<td>$/GSF Spending</td>
<td>$2.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operations</td>
<td>Preventive Maintenance</td>
<td>PM (% of facilities operating budget)</td>
<td>5.07%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Maintenance Staffing</td>
<td>Coverage (GSF/FTE)</td>
<td>63,394</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervision (FTE/Supervisor)</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Custodial Staffing</td>
<td>Coverage (GSF/FTE)</td>
<td>45,217</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervision (FTE/Supervisor)</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grounds Staffing</td>
<td>Coverage (Acre/FTE)</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Supervision (FTE/Supervisor)</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energy Performance</td>
<td>Consumption (BTU/GSF)</td>
<td>94,706</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Service Performance</td>
<td>Service Process Index (1-100)</td>
<td>81</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These key performance indicators will be updated after we are able to establish targets and weighting with UAS.
Questions & Discussion
Addendum to Final Presentation

- Slide 4
 1. ROPA+ stands for Return on Physical Assets
 2. The amount of space included on the analysis varies, but is similar, for peer different institutions; we state the total included GSF for UAS to establish the space included in the ROPA analysis

- Slide 5
 1. “Evaluating the balance of needs” is talking about having a strategy toward the approach of capital projects. To ensure that the most valuable capital projects are completed, it is important to consider the relative needs of a building with the age, or associated risk, of the space. This also speaks to the concept of functional obsolescence; doing work in a space where you know what the long-term plan is for that space and not just replacing the boiler because it is due for replacement

- Slide 10
 1. As a building ages the lifecycles become more expensive, frequent & critical. Since UAS has 37% of its space under 10 years old, these building lifecycles will need to be addressed in the same time frame. There will need to be a plan now to meet these needs in the future
 2. The order of the colors on the pyramid is the same order used in the bar chart and matches the legend at the bottom of the slide

- Slide 11
 1. The goal with this chart was to highlight two things
 - UAS has reduced its renovation age more significantly than peers
 - UAS is significantly younger than peers, generally speaking

- Slide 12
 1. I have removed the Auke Bay Marine Station from this chart
 2. The value of the bars equals the change in percentage of space in the under 10 age-category
 3. Now that I’ve removed ABMS, I’ve also changed the bar on the right to represents the current renovation age which matches slide 10
 4. 2012 is important because that is when the latest master plan was published for UAS

- Slide 17
 1. When an institution is adding space, that also means that they are adding need. When a space is renovated, the clock on that building’s needs is also reset. The needs associated with a younger space are far lower than that of an old space. By completing renovations, you are effectively reducing your exposure to risk and one can say that you are stabilizing the future needs from increasing. This is because renovations address needs in a large scale
 2. The subtitle does not read that the future needs of campus will not increase. The life cycle need line represents the amount of funding necessary to keep up with the capital needs of facilities over the course of its useful life. This figure represents replacing components/systems in-kind and does not account for any modernization
 3. By doing renovations, you are resetting the clock on the needs of the facilities
4. Needs increase as a building ages
5. For the area between the lines, we are stating that
 - When funding levels are below the annual investment target you are deferring
 needs, and increasing the backlog and your exposure to risk
 - When funding is between the annual investment target and the life cycle need
 you are maintaining the backlog and risk exposure
 - When you can fund above the life cycle need line, you are able to address more
 needs than what is coming due in that year, thus buying down the backlog of
 need and reducing your relative risk

• Slide 18
 1. Reliable funding has been stronger at UAS than peers historically
 2. Ideally, this means that you should be able to count on those recurring dollars to help
 you reach your annual investment target and keep up with needs more reliably
 3. It does not state that you need more money from the legislature

• Slide 20
 1. This slide is telling you how we have categorized the current and anticipated needs at
 UAS for the next 10-years
 2. The time frames, or year that needs are expected to come due, are identified on the
 next slide
 3. The Lifecycle 10-year need is based off a prediction approach where, through discussion
 with you, we forecasted when the needs are expected to come due in the next 10 years
 4. The annual investment target is a budget model. It represents the amount that should
 be funded to ensure that you are able to address the needs of facilities over the course
 of their useful life. It’s a target which is based off the physical characteristics at UAS. It
 is not the amount that should be spent each year, rather the amount that should be
 funded annually
 5. The difference is that the target is what should be funded (budget model) and the 10-
 year need is what should be spent (cash-flow model) to address the needs that have
 been identified

• Slide 21
 1. Our recommended strategy is to ensure that your funding levels are able to satisfy the
 current and renewal needs
 2. Current and renewal needs are based on existing space and represent what is currently
 deferred (backlog) as well as what is to come due in the next 10-years.
 3. Current Need = $1M & Renewal Need = $34M
 4. If you are able to fund $34M over the next 10 years, that would essentially satisfy all
 needs except Modernization & Infrastructure needs (Current & Renewal Needs)